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Abatrnct-A self-consistent discontinuum theory describing the dependence of the diffise reflectance and 
diffuse transmittance of powders on their optical absorption coefficient is presented. The theory is valid for 
particle sixes large compared to the exciting wavelength. It constitutes generalization and evolution of the 
statistical theory of absolute diffuse reflectance of powders put forth by N. T. MELAMED [J. Appl. Phys. 34,560 
(1%3)]. Experimental evidence of the spectroscopic utility of the theory in determining absolute optical 
absorption coefficients self-consistently from both the reflectance and transmittance measurement channels 
sequentially is provided for two powders, and the new photothermai technique of Diffuse Transmittance 
Infrared Fourier Transform Spectroscopy (DTIFTS) is introduced. It is shown that the transmittance channel 
can be used advantageously to measure small changes in optical absorption spectra, as it is more sensitive to 
such changes than the diffise reflectance. Practical experimental limits of the validity of the discontinuum 
theory are also established. 

1. INTRODUCTION 

IN ATTEMPTS to provide realistic descriptions of the optical properties of large powders 
(i.e. powders of size in the order, or greater than, cu ten times that of the probing 
wavelength), several workers abandoned the classical continuum theories of absorption 
and scattering of powder layers [l]. Many of those attempts treated discrete particles as 
plane parallel layers [2-41. MELAMED [5] replaced the plane parallel layers with a 
statistical summation of reflected light intensity fractions over one layer of discrete 
particles reflecting light diffusely according to the laws of geometrical optics. The 
subsequent popularity [6-81 of Melamed’s model is due to his quasi-realistic treatment of 
the discrete nature of absorbing powders, which includes geometrical factors dependent 
on packing density (or void fraction) and particle shape. Unfortunately, the model was 
found to contain conceptual inconsistencies, such as the use of a continuous substrate 
layer underneath the surface particle layer, having the same diffuse reflectance R. 

Therefore, the Melamed model must be considered a hybrid of discrete and continuum 
theories and, as such, physically artificial. Furthermore, it is too restrictive in that it 
treats a semi-infinite layer of nondescript continuum lying underneath a single layer of 
powder. For the work described below, our development of a photopyroelectric (P’E) 
transmission detector has allowed us, for the first time, to obtain photothermally mid-IR 
diffuse transmission spectra from loose powders of low absorptance. Thus, we required a 
model to treat both diffuse reflectance and transmittance from finite thickness particle 
layers. 

In this work, a self-consistent non-hybrid theory is given in agreement with the 
fundamental physical principle of optical energy conservation. Expressions are devel- 
oped for the diffuse reflectance and trasmittance of layers of discrete particles of 
arbitrary thickness (i.e. arbitrary number of layers in a multi-stack system). The theory is 
then applied to calculations of optical absorption spectra of Na2C03 and surface 
derivatized powders using photopyroelectric Fourier transform infrared (FTIR-P*E) 
detection and self-consistent manipulation of the diffise reflectance (DRIFTS) and the 
new diffuse transmittance (DTIFTS) data channels. 

* On leave from the Photoacoustic and Photothermal Sciences Laboratory, Department of Mechanical 
Engineering, and the Ontario Laser and Lightwave Research Center, University of Toronto, Toronto, Canada 
M5S lA4. 
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2. DIFFUSE REFLECTANCE AND TRANSMHTANCE THEORY OF MULTI-LAYERED 
POWDER STACKS 

The multi-layer geometry considered in this work is shown in Fig. l(a). The assumed 
regularity of the powder stack is idealized, as depicted in Fig. l(a), however, any 
deviations of real powders from the ideal stack geometry impact on the value of the 
packing density only [5]. This value is derived by a fit of experimental data to the theory 
(see Section 3 below), and as such it does not represent a limitation on the applicability 
of this treatment to specific stack geometries. The building blocks of the theory consist 
of: (a) single particle diffise reflectance and transmittance functions; (b) optical transfer 
functions for interfacial incidence in the two-layer stack; (c) optical transfer functions of 
two-layer stack for incident intensity from below (due to back-scattered bulk radiation); 
(d) multiple-layer treatment via single-particle equivalent (SPE) transfer functions. 

2.1. Single particle diffuse functions 

In the entirety of this theoretical treatment, spherical particle geometries of large 
diameter compared to the wavelength of the exciting radiation will be assumed through- 
out. Although sphericity is a convenient oversimplification of actual powder stacks, it is 
by no means restrictive of the scope of the theory: besides a small effect due to powder 
packing density variations (to be dealt with in Section 3 below), particle geometry is 
mostly important at the single particle level, and specifically in calculating the fraction of 
radiation reaching the particle surface after absorption throughout its bulk. Therefore, 
different shapes will result in integrating Lambert’s cosine law over a different volume, 
thus changing the functional dependence of the non-absorbed fraction M on particle 
geometry. Application of Lambert’s cosine law to an idealized spherical particle yields 

PI: 

M(k) - (kd)2 -2 [l- (kd + 1) exp(-kd)] 

where k = k(A) is the particle optical absorption coefficient at wavelength A-, and d is the 
particle diameter. For optically thin particles, Eqn (1) gives upon expansion of the 
exponential: 

M(kd4)=1-;(kd)+;(kd)‘-. . . , (2) 

so that 

M(0) = 1 (3) 

for absolutely transparent particles. Assuming unit incident intensity of radiation on a 
single spherical particle, and following Melamed, the initial contribution to the diffuse 
reflectance due to the surface particle R(*) is taken to be [5] 2x&,, where x is the fraction 
of radiation scattered in the upward direction, expressed as a fraction of & steradians, 
and r&(n) is the average external reflection coefficient, a function of the refractive index 
n. The factor 2 appears due to the fact that the reflected component of the incident ray is 
scattered through approximately 2~ steradians by the surface particle. No such factor is 
required for reflections from underlying particles. Such particles are assumed to scatter 
the reflected component of the incident radiation through a 4~ sterad solid angle, due to 
the symmetric presence of nearest neighbors in all directions. In the geometry of Fig. 
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L = Nd 

T,;,(k) 

Fig. 1. (a) Idealized geometry of a uniform, multilayered powder as ordered stacks of single, 
identical particles of diameter d. The thickness of the powder, corresponding to N layers, is 
L = Nd. Incident monochromatic radiation at wavelength d of unit intensity Z, = 1 is assumed to 
result in diffuse reflectance R&,(k) and diffuse transmittance T&,(k); k(d) is the powder optical 
absorption coefficient at excitation wavelength 1; (b) geometry for the calculation of single 

particle diffuse reflectance and transmittance. All symbols are defined in Eqn (4). 
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l(b) we can write: 

ANDREAS MANDELIS et al. 

II= 2nii, 

I*=l-2rm, 

I, = Z,M 

I 6 = fii& = fi?M21 I 2 

I~=I~-Z~=(1-~i)~iM2Z2 

I =I M=fi?M3Z 8 6 I 2 

Ig=XfiiI8= fi3M312 

Z~=l,-Z,= (1 -~i)Ai?M3Z2. 

@a) 
(4b) 
(44 
w-9 
(Je) 
(4f) 

(4&J) 

(4h) 

(49 

(4j) 

(4k) 

In Eqns (4), the symbol Ai= fii(n) stands for the average internal reflection coef- 
ficient, a function of the refractive index LJ. 

Upon addition of all the optical intensity fractions contributing to upward transmission 
(i.e. to diffuse reflectance) one obtains: 

R’“’ = II + z, + 112 + * * * = &tie + (1 - Ai)~iM’Zz + (1 - tii)tifM’Zz + * * * 

=2w~~+(l-~~)~~M2Z~[1 +(AiM)'+(ftiM)"+ . . ‘1 

or, for infinite internal interreflections: 

R’“‘(k) = 2mi, + (1 - 2xxA,) [‘ll-Y$$]. 

Furthermore, summing up the infinite number of fractions contributing to downward 
transmission (i.e. to diffuse transmittance) yields: 

T’“‘+;+&+. . . =(1-tii)MZ2+(1-fii)fifM3Z2+. * * 

=(l-&i)MZz[l+ (fiiM)2+(fiiM)4+ * * *] 

or 

(6) 

It will be noticed that Eqn (6) is the result of unidimensional geometric considerations 
(upward and/or downward light diffusion). Taking into account lateral diffusion properly 
would yield a three-dimensional solution to the problem for the price of essentially 
analytically intractable geometric complications. Instead, lateral contributions have been 
resolved into their upwards and downwards components [5] via the assumption of 
isotropic scattering from a particle, with the sole effect of defining x in terms of the 
probability for diffuse scattering in the upward direction only (Section 3 below). 
Equations (5) and (6) can be easily shown to give for absolutely transparent particles 
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(M= 1): 

R’“‘(0) + P’(0) = 1 
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(7) 

as expected from conservation of optical energy in the case of no absorptive losses. 

2.2. Optical transfer functions for intel)eacial incidence in a two-layer stick 

A transfer function corresponds to the optical response (output) of a particle 
(reflection, transmission and absorption) to unit intensity of incident radiation (input). In 
this context R(“)(k) and T”(k) are single particle reflectance and transmittance transfer 
functions, respectively, for light incidence from above. At the interface between two 
identical particles, members of a two-layer powder stack, a finite incident intensity in the 
downward direction results from transmission through the surface particle layer. Figure 
2(a) shows that contributions to diffuse reflectance from the lower particle arise from (i) 
direct external reflection at its upper surface, of magnitude: 

Rib)=xti,; (8) 

and (ii) penetration into the lower particle, multiple internal reflection, and re- 
emergence from the upper surface, of magnitude: 

Rib’= (1 -xA,)RCb)(k) (9) 

where Rcb)(k) is the upward reflected fraction of unit intensity incident on a bulk (i.e. 
below the surface layer) particle. An approach similar to the calculation of R(‘)(k) yields: 

Rcb’(k) = 
(1 - fii)@&f* 

1 - (fi$4)Z 

so that the total amount of reflected energy from the lower particle is: 

qzR{b’+R$b)= nrii, + (1 -xm,)Rcb)(k). (11) 

It should be noticed that q differs from R(“)(k) only to the extent that the fraction of 
radiation x scattered upward is assumed to suffer symmetric scattering through 41c, rather 
than 2z, steradians by the bulk particle. Furthermore, it is convenient to define in Fig. 
2(a) the fraction Pb)(k) of ti intensity (penetrating the lower particle) which exits from 
the bottom surface as T,, so that: 

TV = ti~b’(k) = (1 -xritc)Tcb’(k). (12) 

An approach similar to the calculation of T’“)(k) gives: 

fib)(k) = (l- Mi)M 
1 - (HZ@)‘” (13) 

In order to account for the infinite reflections between the surface and bulk particles at 
the interface, one may assume single particle reflectance and transmittance transfer 
functions, F@ and F@, respectively, for light incidence from below, Fig. 2(b), and then 
treat the two-particle system as two planar material layers, between which light interferes 
in the classical geometric optics limit consistent with the large size of the particles. The 
geometry is shown in Fig. 2(c), with each particle represented by a thin layer of infinite 
lateral dimensions accounting for infinite interreflections. Using the symbols shown in 
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(a) 

/1 Surface particle 

(t-4 FtR) I J 
(1) 

Bulk particle 

Surface “particle” 

Bulk “particle” 

T 
1 T2 T3 

L___._________~ 
T 

IF 

Fig. 2. Geometry for the calculation of two-particle stack optical transfer functions. (a) 
Calculation of total amount of reflected energy from bulk particle, assuming unit input intensity 
from above, I,- 1. Rib), Rib) and fi were defined in the text. T, corresponds to transmission after 
infinite interreflections. Rf*‘)= (1 -x)$Rf); and rl=Rib)- Rp3’)= [l - (1 -x)rFr,]xtit, is the 
fraction of returning light coupled into the surface particle. The two particles were arti&ially 
separated from contact to illustrate interfacial optical processes; (b) schematic for the calculation 
of single particle optical transfer functions for incidence at lower surface. If the depicted particle 
is not a surface layer member, P) and F(*) must be replaced by F[p- i) and F@- i), respectively 
[see Eqns (17)]; (c) calculation of optical transfer functions RIF and ?‘tr for interfacial contribu- 

tions to diffuse reflectance and transmittance. 
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Figs 2(b) and (c) we write: 

FIR’ = qF@ 

Fp = qF# 

T1= (1 -XHr,)T@) 

T*=(l-x~~)T(b)FP=q(l-x~,)T(b)F~ 

F$R’ = qFpF[g = q2F[$F# 

Fp = qF[gFp = q2[ F&y 

T3 = (1 - XC&) T’b’F$T) = q*( 1 - X& ) fib’[ F[g ]* 

F$RR’ = qFpF# = q3[ F[3]‘F{$. 
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(14g) 

(14h) 

Summing up all the upward reflected fractions gives the contribution of the two-particle 
stack to the reflectance for unit input interfacial intensity T= 1, i.e. the interfacial 
reflectance transfer function: 

RIF = 2 Fi'R' = qF# + q*F[fJ’F[;j + q3[ F[;,]*F[$) + . . + = qFt? 
1 - qFIT)’ 

(15) 
j=l 

Similarly, one obtains the two-particle stack interfacial transmittance transfer function: 

TIF=C Ti=(l- ~nQT(~)(l+q~~+q*[F{~]*+ - - .) 
j=l 

fib’ 
=(1-x&) 

[ 1 1 - qF# * (16) 

Equations (15) and (16), valid for a two-particle stack with an interface, where the 
upper layer of particles is the surface layer with transfer functions F[f‘i’ and Fm, may be 
easily generalized to represent the transfer functions of the interface between the 
(N- 1)th and Nth layers. The only change required for this extension is the replacement 
of F# and FIT) with appropriate transfer functions for the (N- 1)th layer: 

Under these conditions we may write: 

and 

In order for the total 
calculated, R[p must be 

U(A) 4717-I 

(1W 
(17b) 

diffuse reflectance of the N-layer particle stack R& to be 
multiplied by the optical transmission output T&-i) of the 
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(N- l)-layer stack, resulting from unit intensity incidence on the surface (N= 1) layer, 
and the product should then be added to the total diffuse reflectance R&-1j of the 
(N- l)-layer stack. The total diffise transmittance of the N-layer particle stack, CM, can 
be found upon multiplying a$ by the optical transmission output 7&-i, of the 
(N-1)-layer stack, resulting from unit intensity incidence on the surface layer. 
Conservation of optical energy for the Nth layer transfer functions may be proven in the 
limit k = 0 as follows: Given conservation of the (N- 1)th layer functions 

q2.1)(0) + qx I,@) = 17 

then Eqns (18) and (19) give: 

RfP(O> + GY0) = 
qFg&(O) + (1 -Xfie)T(b)(0) 

1 - qF@ I,(O) 

= [qU - qz. I,(W + ((1 - X~e)l(l+~i)}]/[1-4F~-1)(0)1 

1 - 4qx I,(O) 
= 1 - qF@-I,(O) = l* (21) 

2.3. Optical transfer functions for two-layer stack; incidence from below 

The calculation of these functions is necessary because back-scattered radiation from 
low lying particle layers acts as an optical source for overlying particles. Therefore, the 
effects of a new underlying Nth layer on the diffuse functions of the (N- 1)layer stack 
amount to: (i) an additive contribution to reflectance due to light, transmitted through 
the (N- l)-layers, being partially reflected upwards by the Nth layer; and (ii) a 
multiplicative attenuation of the transmittance, as the light transmitted through the 
(N- 1)-layers must pass, and be partially absorbed, through the body of the Nth layer. In 
the single particle geometry of Fig. 2(b) incidence from below is equivalent to incidence 
from above, Fig. l(b), provided that x is replaced by (1 -x), indicating the fraction of 
radiation scattered back in the downward direction, expressed as a fraction of 4~ 
steradians. Then, a combination of Eqns (5) and (10) yields an expression for FIT,‘, 
viewed as a ‘downward reflectance’, which contributes, of course, to the overall 
transmittance: 

F[$=p=(l-x)fi,+[l-(l-x)rQP’ (22) 

where the first term on the right-hand side is due to direct reflection of the incident 
energy at the lower surface of the particle, and the second term is the sum of fractions of 
radiation penetrating the particle material, which, upon internal reflection and absorp- 
tion, exit the lower surface after successive, infinite round trips. Similarly, one finds that, 
since the direct reflected fraction at the lower surface is (1 -x)@, the fraction penetrat- 
ing the particle material is [l - (1 - ~)a~] and, reasoning as in the derivation of Eqn (6), 

qy=J= [l- (1 -x>m,]P. (23) 

It ought to be noticed that the functions RCb) and Tcb) have been employed in Eqns (22) 
and (23) instead of R(“) and T(“’ consistent with the bulk nature of all lower-side particle 
surfaces, including that of surface layer particles. 

Once the single particle transfer functions F[t) and F&) have been determined, the 
two-layer stack diffuse functions can be readily determined from Eqns (18) and (19) and 
the operations described in the paragraph following those equations. Setting N= 2, 
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i 4 

X 

,- 
I 
I : 0 \ 

“: : 
I’ 

I, =1 

Fig. 3. Schematic representation of total diffuse reflectance and transmittance for a two-layer 
stack as a combination of simple algebraic operations between the upper and lower layer 
subsystems. The m symbols indicate summations of infinite partial rays contributing to the 

operation shown. 

T&-i) = Tc”), R&_Ij = R(“) one obtains: 

and 

(24) 

where 

K= (1 -x&)7? (26) 

In a laborious, but straightforward manner, it can be shown algebraically that Eqns 
(24) and (25) are consistent with the requirement for conservation of optical energy in 
the two-layer stack: 

R&(k = 0) + TT,(k = 0) = 1. (27) 

Figure 3 shows schematically the combination of operations required to produce the 
diffuse functions for N = 2. It is important to note that the optical transfer functions for 
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two particles can be described by considering the upper particle as a ‘black-box’ 
characterized by its own forward and back-scattering transfer functions FcR) and Fm, 
which multiply the inputs from the lower particle plus the interface, according to Eqns 
(15) and (16). This description is extremely useful for building up multi-layer diffuse 
functions, with the (N- 1) upper layers being considered as a single-particle-equivalent 
(SPE) black box with known transfer functions. 

2.4. SPE treatment of multiple-layered stacks 

In view of Part 2.3 above, multi-layer stacks can be easily treated by considering the 
effects of the presence of (N- l)-layers over the Nth layer. For a three-layer stack, this 
entails calculating the outputs of a two single-particle equivalent (ZSPE) structure for an 
arbitrary interfacial optical input T, from below, as is the case with the additive 
reflectance contribution from a new (3rd) underlayer: the geometry is entirely similar to 
Fig. 2(c) with Fy’+F& FjT)+F[z)j, j T). T+ Tcz)j; and with the T= 1 downward input 
having been replaced by T= T,, an upward input as shown in Fig. 4. Then infinite series 
of contributions to F& and F& similar to the fractions of Part 2.2 above, may be written 
and summed up to yield: 

Ft$ = T, 
F[$) 

[ 1 1-qF&’ 

and 

FR=p+(l-xrFt,) 
[ 1 TCb’F[$ T 

1-qF[J a* 

(28) 

(29) 

When unit intensity, Ii= 1, is incident from below the 2-SPE, T, becomes the single 
particle reflection transfer function F[t)=J, Fig. 2(b); in addition, the term Fm=p 
appears in Eqn (29) as the lower particle’s individual contribution to the transmittance. 

(-0 

F (2) 

Fig. 4. Schematic illustration of transfer functions from two-single-particle equivalent (2~SPE) 
layer; the equivalence of the two-particle stack with, and replacement by, a single 2-SPE is also 

shown. 
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Equations (28) and (29) become the 2-SPE transfer functions and may thus be re-written 
as: 

J2 
Fgj) = - 

l-!?P (30) 

and 

fv=p[l+(&)]. (31) 

Since the interface between the N = 1 and N = 2 layers may also be taken to be the 
(N- 1)th and Nth layer interface, Eqns (28) and (29) may also be written generally as the 
following optical transfer functions: 

and 

(32) 

(33) 

where p appears in Eqn (33) as the contribution of the Nth particle layer alone to diffuse 
transmittance. 

Equations (30) and (31), along with Eqns (18) and (19), and the operations described 
in the paragraph following those equations, can readily give the diffuse functions for the 
three-layer stack: Setting N= 3, T&_Ij = T&, R&_Ij = I?& one obtains: 

Use of Eqns (22), (24), (25) and (30) gives: 

RI,,=R(‘,+qJT”’ l+ KJ 
1-qP ( (1-w)P-qF8?1 

Similarly, for the diffise transmittance: 

T&=(1-x&) 
T(b) 

[ 1 l-qFf&) T:)9 (36) 

so that use of Eqns (22) and (25) gives: 

TZ,= 
K2 

(1 - qp) 11 - #RI Tc”‘* 

(34) 

(35) 

(37) 

The diffuse functions for the four-layer stack can be easily found considering a 
three-single-particle-equivalent (3~SPE) overlayer ‘black box’ with a single particle layer 
below the 3-SPE: (a) Since the transfer functions for the 2-SPE are known, Eqns (30) 
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and (31), those of the 3-SPE may be found from Eqns (32) and (33) with N = 3: 

F{;’ = J (38) 

(39) 

(b) Equations (38) and (39) when combined with Eqns (30) and (31) give the 3-SPE 
transfer functions for incidence from below (an optical source due to the presence of the 
fourth layer): 

F[;’ = 
J3 J3 

(1-4~)[1-qF~$l=(1-qp)~-qp~ (9 

and 

(c) Upon calculation of the 3-SPE transfer functions, the effects of the presence of layer 
four can be found by replacing the ‘surface particle’ in Fig. 2(c) with the 3-SPE. 
Computationally, the recipe outlined in Part 2.2 above must be followed, so as to yield: 

T&=(1-x&) 
T(b) 

[ 1 1 - @IT,, 
TT,,; 

(42) 

(43) 

(d) Substituting Eqns (22), (35), (37), (40) and (41) into Eqns (42) and (43) gives for the 
four-layer stack diffuse functions the following expressions: 

1 KJ (W2 
1-qp+(1-qp)2[1-qF[$]+(1-qp)2[1-qF@]2[l-qF&)] T’*‘(44) 

TT,, = 
K3 

(1-w)[l-qF~l[1-qFf.‘i-j] (45) 

The proofs of optical energy conservation for the three- or four-layer stacks of 
particles are too cumbersome to perform algebraically; however, it can be easily shown 
with computer simulations that 

R$,#=O)+ Z’&(k=O)=l;N~3. (4) 

The procedure followed in steps (a)-(d) above for the calculation of R&) and T& may 
be repeated for N>4 stacks of powders, and general expressions result, which can be 
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written in a compact form as follows: 

955 

N-l 

R&, = R(“’ + qJT’“’ c 
1 

m=I 1 - qF8 

and 

T&, = 

where 

KN-1 

N-l 

n [1 - s%‘l 
i=O 

T(“, (9 

n [l-qF@l=[l-qF#][l-qF[Tj]. . . [l-qFG;] 
i=O 

(49) 

with the convention 

fi [1 -qF{$‘l= 1 - qF&$ = 1 (i.e. $1~ 0). 
i=O 

(50) 

The range of validity of the number of layers N in the powder, which appears in Eqns 
(47) and (48) is 

lSzv<=J (51) 

always subject to condition (46). 
Equation (33) provides a recursion relation for the numerical calculation of F(T from 

the value of Fg!,, in Eqns (47) and (48): 

(52) 

According to our convention (50)) seed value for j = 0 in Eqn (52) is 

F@ = 0, (53) 

with Eqns (22), (31) and (41) giving the expressions 
Expressions for higher (j) values are best obtained 
expressions are always possible. 

for j = 1,2 and 3, respectively. 
numerically, although analytic 

3. COMPUTER SIMULATIONS OF DIFFME FUNCTIONS AND PARAMETER DEPENDENCE 

STUDIES 

The multi-layer powder theory has been used in computer simulations to study the 
large-size powder spectroscopic behavior from the viewpoint of diffuse reflectance and 
transmittance dependences on the optical absorption coefficient k via the absorptance, 
kd. In this work the product (kd) is used in lieu of the more conventional spectroscopic 
notation 1- T=(k)- R=(k). The calculations require evaluation of the external and 
internal reflection coefficients, fi,(n) and fir(n), respectively, at the single-particle level. 
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Recent calculations of these coefficients [9] for absorbing particles producing uniformly 
diffuse radiation gave the following functional dependences on refractive index: 

n*-8n6+6n4+1 2n3 
m,(n) = 

n4-*n3+2n2-+ 

2(n2 - l)* + 2(n* + l)*(n* - l)* -(n2 

[ 

8n4(n4 + 1) 

+ (n2+l)(n2-l)4 
] ln(n)-[n~(J~lt~] ln(z);nal (54) 

1 1 n*-sn+2-$ 8 ) 2n n6 - 8n4 + 6n2 + n-* 
&(n)=l-g+ -- 

2(n2 - l)* (n’ + l)* + 2(n* + l)*(n* - l)* 

]ln(n)-[H]ln(z);nal. 

The above expressions can, in principle, be modified appropriately to include effects of 
the extinction coefficient of strongly absorbing particles, without further changes in the 
theoretical framework presented above. In that case, one needs to replace tie(n) with 
&(n, k) and *i(n) with Ifti(n, k). Another parameter which appears in the theory is the 
fraction x of radiation scattered in the upward direction [and the fraction (1 -x) 
scattered in the downward direction]. This parameter has been given by MELAMED [5] as 
a function of the average single particle transmission (T) throughout its entire surface: 

X” 

X=1-(1-2x”)(T) 

where in the present theoretical framework we can show [see Eqns (10) and (13)]: 

(57) 

and x, is a constant representing the probability for diffuse scattering in the upward 
direction, thus contributing to diffuse reflectance. MONAHAN and NOLLE [8] took into 
account the anisotropic emission from particles due to simultaneously occurring absorp- 
tion, and presented a more complete expression for x: 

X” 

‘= 1- (1 -x,[l +exp(-M)])(T)’ (58) 

MELAMED [5] used the value x, = 0.284 corresponding to a solid angle of (4 - e/2)n 
steradians, which represents close-packed spheres. In our experience [9] and that of 
others [6], the actual value of x, required for best fits of theoretical diffuse reflectance 
curves to experimental data has little physical significance and may be fixed empirically 
so as to give the best fit for a given powdered specimen. Equation (58), in comparison 
with Eqn (56), is a further manifestation of the fact that solid angle considerations alone 
may not be adequate to calculate a physically meaningful value of x, or the effective x, 
value, for an ideal powder stack. Besides, it is very difficult to calculate x, analytically for 
non-spherical (i.e. real) powders stacked in non-ideal geometries, unlike Fig. l(a). In 
our view, the main experimental significance which may be attributed to x, is that best-fit 
reproducibilities of its value in each case are important as characteristic indicators of the 
reproducibility of average packing conditions in powered samples. For applications of 
the present theory, Eqn (56) was chosen to represent x, as it was previously found [9] 
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that the actual functional form of x =x(M) has little effect on powders of loose packing, 
such as those in our experiments. Figure 5 shows computer simulations of RFw and TT, 
for N = 5, as functions of the particle absorptance kd, with X, as a parameter. Figure 5(a) 
indicates that the actual value of X, has less than 10% effect in the value of the diffuse 
reflectance at high values of kd( Z= l), with negligible effect at kd ~0.1. As the particle 
size increases, the reflectance decreases due to enhanced absorptance by the larger 
particles, in agreement with well-known experimental observations in this and extensive 
earlier work [lo], regarding non-strongly absorbing powders. At the same time, an 
increased packing density is expected to incur a decreased scattering probability in the 
upward (back-scattered) direction, due to the enhanced probability for multiple scatter- 
ing of primary rays off the sides of neighboring particles. This would decrease the X, 
value. The overall effect is one of an increase in the diffuse reflectance with increasingx,, 
as shown in Fig. S(a). On the other hand, the increased sideways and downward 
scattering is expected to enhance the value of overall transmittance. Therefore, the 
diffuse transmittance is increased with decreasing x,, as observed in Fig. 5(b). The effect 
is less pronounced than that on the diffuse reflectance, since a substantial component of 
the contributed intensity due to scattering is absorbed by underlying particles, especially 
at high values of kd [extreme right of Fig. 5(b)]. The essential low sensitivity of T&(kd) 
to the only quasiarbitrary parameter in the present theory renders the use of this channel 
advantageous over that of R&(kd) for purposes of accurate spectroscopic measurements 
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of large-size powders. Overall, however, it should be kept in mind that the values of both 
diffuse functions are affected by ca 10% or less by the actual value assigned to x,. 

Figure 6 shows the effects of changing refractive index (n) on the diffuse reflectance: 
the only parameters affected by such changes are the coefficients m,(n) and mi(n), Eqns 
(54) and (55). The diffuse reflectance, Fig. 6(a), is quite sensitive to the value of n in the 
range 1 s n d 1.2, however, it exhibits less than 10% sensitivity to IZ for 1.2 d n s 2 in the 
experimentally important range of 0 d kd\ < 1. An increased refractive index results in an 
enhancement on R&(kd), as expected due to increased optical mismatch at the powder- 
air interface. Figure 6(b) indicates that the reflectivity enhancement is substantial for 
kd> 1, the opaque limit for most powdered specimens. Cross-overs among curves of 
different n in the kd< 1 region, Figs 6(a) and (b), have been previously observed in the 
original Melamed treatment (Ref. [5], Fig. 4) and in a corrected version (Ref. [9], Fig. 
4). The flattening of the curves toward the high end of kd values in Fig. 6(b) is due to the 
fact that in the very opaque limit the only contribution to diffise reflectance is from 
direct reflection at the upper surface of the uppermost powder particle layer, i.e. 

%I = R’“’ = 2_&&(n) (59) 

from Eqns (47) and (5). In this limit M = 0, and R& scales with fi,(n), independent of N. 
Figure 7 shows the dependence of T&(kd) on n under conditions identical to those of 
Fig. 6(a). Unlike the R&(kd) behavior, the diffuse transmittance appears to be very 
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Fig. 6. Diffuse reflectance dependence on refractive index (n) of the powder. N= 5, x, = 0.284; 
(a) l.Ol~n~2.01 in steps of 0.2. The range kdcl is experimentally important for many 

powdered samples; (b) l.lGn~5.1 in steps of 1.0. 
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Fig. 7. Diffuse transmittance dependence on refractive index (n) of the powder. N= 5, x, = 0.284; 
l.OlSnG2.01 in steps of 0.2. 

sensitive to the actual value of n in the entire 1.01 in s 2.01 range; it exhibits no 
cross-overs and decreases monotonically, essentially to zero level for n> 1.8 and 
kd > 0.2. In an extended kd range, transmittance becomes zero (i.e. non-measurable on 
a linear scale) for kd 2 2 at IZ = 1 .Ol. It is very important to note that, upon comparison of 
Figs 6(a) and 7, the decrease of diffuse transmittance with kd is steeper than the 
equivalent decrease of diffuse reflectance in the experimentally important range kd < 1. 
Thus, it appears that the transmittance channel can be used advantageously to measure 
small changes in k(A) spectra, since it is more sensitive to such changes than the 
reflectance, especially toward the high-kd end, where the RT, curves saturate, Fig. 6(b). 
MELAMED [5] was the first to recognize this essential limitation of diffuse reflectance 
measurements, while the present work indicates an alternative operation as a solution, 
namely diffuse transmittance spectroscopy from thin layers of non-transparent powders. 

Figure 8 shows the dependence of the diffuse functions on the number of layers N in 
the powder stack. A comparison between Figs 8(a) and 8(b) indicates that transmittance 
is much more sensitive to N for all values of N in the entire kd range under consideration. 
Generally, zero-transmittance semi-infinite powder conditions set in for kd values of cu 
0.8 (5 layers), 0.4 (7 layers) and 0.3 (9 layers). This observation is important in that the 
availability of blackbody transmission P*E detectors described below may help deter- 
mine when a powdered specimen is thick enough to be considered semi-infinite, a 
condition supplying a powerful criterion for quantitative spectroscopic analysis. Figure 
8(a) further shows that the relative lower sensitivity of RT,(kd) to N cannot form a good 
criterion for ascertaining semi-infinite behavior. This characteristic may, in turn, be 
thought of as an advantage of the diffuse reflectance channel, as absolute quantitative 
determination of k does not depend crucially on the total effective number of layers N, 
except at very low kd( ~0.2). 

Figure 9 is the diffuse reflectance from a 35 layer stack assumed to approximate a truly 
semi-infinite sample. At k = 0 the reflectance is 0.963, with a concomitant value of 3.7% 
for transmittance. The values chosen for the parameters n and X, are the same as those 
used by MELAMED [5] for fitting didymium glass data to his semi-infinite theory. 
Although Melamed did not disclose the thicknesses of his 34pm and 128pm particle 
diameter powders, he attributed deviations in the low range of experimental values 
(kd < 0.02) in part to the failure of the sample geometries to conform to a semi-infinite 
thickness. Figure 9 substantiates this early hypothesis and any fits to experimental data 
would result in RT,(kd+O) < 1, as observed by Melamed, in disagreement with his 
model. As R$.,$kd) is quite sensitive to the value of N at kd < 0.1, the Melamed approach 
can be severely limited in that transparent regime. A physically consistent version [9] of 
Melamed’s hybrid theory, which is consistent with optical energy conservation between 
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the upper (discrete) particle layer and the energy transmitted in the continuum substrate 
yields absolute diffuse reflectance values Rz(kd = 0) = 0.58, much below experimental 
data values which tend to agree very well with the present theory. Thus, Fig. 9, curve #2 
represents the internally consistent normalized expression for diffuse reflectance [9]. 
This discrepancy between the two curves must be sought in the inconsistent assumption 
of the original Melamed theory [5] that the diffuse reflectance of a discrete single layer of 
particles be the same as that of a semi-infinite substrate continuum, which neglects the 
effects of transmitted optical energy through the very important first layer. RT,(kd) 
simulations of Eqn (47) with N= 1, i.e. Eqn (5), yield R;,(O) values close to the value 
0.58 stated above, a further clue that the hybrid nature of the earlier discrete theories 
[5,9] was primarily dominated by their single particle layer character, at least at low kd 
with an inconsistent correction made through the assumption that reflectances with and 
without the upper particle layer are identical [5]. Better fits to the data with large kd in 
Fig. 9 than the one shown (curve #l) are possible to obtain with the present theory by 
altering the value for x,. In Fig. 9, curve # 1, x, = 0.284 was chosen for direct comparison 
with Melamed’s theory. Convergence of both curves in the high kd region is expected, as 
the dominant contribution to diffuse reflectance is made by the surface discrete particle 
layer in both theories. This is indeed the case with Melamed’s original theory [5] for 
values of kd 2 0.07. 

The foregoing treatment in the limit of geometric optics did not take explicitly into 
consideration any effects due to the partial polarization of the scattered light. Since the 
tacit assumption of incident natural light was used, it can be shown [ll] that the 
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Fig. 8. Variation of diffuse functions with the number of layers N in the powder stack; n = 1.41 
and xU = 0.284. (a) Diffuse reflectance R&$ (b) diffuse transmittance TTN). 
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Fig. 9. Diffuse reflectance response of an approximately semi-infinite sample: N= 35, n = 1.55, 
x, =0.284 (curve #l); internally consistent and normalized curve (#2), from Ref. [9]; data points 

for didymium glass powder, from Ref. (51. 

unpolarized fraction of the scattered light from a single spherical particle in the forward 
direction is cu lo3 times higher than the polarized fraction (with a maximum in the 
transverse plane). The above calculation involves a dielectric sphere of large size 
compared to the probe wavelength. Therefore, polarization considerations appear to 
have little effect on the quantitative validity of our treatment and were ignored in this 
work. This simplification is further in agreement with instrumental tests (see below) and 
the experimental fact that quantitative optical absorption coefficient results presented 
below varied minimally (within 10%) whether or not cross-polarizers were utilized in the 
paths of incident and scattered radiation. 

4. INSTRUMENTATION AND MATERIALS 

The Bomem DA3 Fourier Transform Infrared (FTIR) spectrometer was used to 
obtain data throughout this work. This particular instrument, in addition to its availabil- 
ity of selectable mirror velocities, provides access to the interferogram phase, an 
important information channel in FTIR photopyroelectric spectroscopy (FTIR-P*ES) 
[12]. A Globar source and a Ge-coated KBr beam splitter provided optical interfero- 
grams of powder spectra. For our purposes the wavenumber range 2000-4000 cm-’ was 
found to be adequate. A single photopyroelectric detector assembly was used as the 
sample holder for diffuse reflectance (DR) infrared Fourier transform spectroscopy 
(DRIFTS) as well as the detector for the new diffuse transmittance infrared Fourier 
transform spectroscopy (henceforth referred to as DTIFTS). The details of the conven- 
tional photopyroelectric detector have been presented elsewhere [12,13]. The sample 
holder/detector used in this work consisted of thin (28pm) Kynar polyvinylidene 
fluoride (PVDF) films from Pennwalt [14] inserted in an Inficon microbalance housing 
[12]. The surfaces of the PVDF film were sputter-coated with cu 250 nm of Ni-Al layers 
serving as electrodes for carrying P*E voltages to amplification and detection electronics. 
In PVDF and other pyroelectric materials, a change in the temperature causes a 
molecular rearrangement, thus changing the charge density and surface potential. When 
the temperature change is due to photon absorption, and subsequent thermal conversion 
of optical energy, the resulting voltage across the material is the photopyroelectric effect 
[15]. The PVDF P'E element used for these experiments has an active area of circular 
cross-section and diameter equal to 9 mm. In order to eliminate contributions to the 
reflectance from light reflected directly from the metallized sample holder (PVDF) 
surface, great care was taken to blacken that surface by depositing a thick layer of carbon 
soot (=lOOpm), so as to generate zero-level signals in the DA3 InSb semiconductor 
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diffise reflectance detector. This sensor is known to exhibit non-linear response under 
conditions of high photon fluxes. In order to check for such undesirable effects, the 
energy in the single-beam spectrum was checked below the cutoff at 18OOcm-’ by 
examining the phase spectra, and was found to be zero, thus eliminating the possibility of 
non-linearities. The sample holder was mechanically adapted and fitted to the “Praying 
Mantis” diffuse reflectance accessory (Harrick Scientific Corp., Model IMG 2700 L) of 
the FAIR spectrometer, as shown schematically in Fig. 10. Although the Harrick 
“Praying Mantis” DR accessory does not collect all the diffusely reflected radiation and 
ideally only an integrating sphere will allow the true DR spectrum to be measured, 
collecting the DR spectra between 0” and 90” with our instrument was expected to be 
representative of the true diffuse reflectance within reasonable error due to the recently 
demonstrated angular dependence of DR spectra [16-181. This expectation was substan- 
tiated by the very good agreement between DRIFT and DTIFI spectra of thin 
Probimide 408 films [12], where the latter spectrum is not subject to the instrumental 
limitations of the “Praying Mantis” accessory. The positioning of the sample holder/ 
detector cell was optimized so as to be able to monitor the reflectance and the 
transmittance either simultaneously or sequentially. The cell was mounted at approxima- 
tely the focal plane of the Globar beam, the spot size of which was cu 4-5 mm when 
focused using the largest DA3 throughput aperture (#l). Care was taken for the sample 
powder surface plane to coincide with the beam focal plane. Output P*E transmission 
voltages were carried outside the FIIR spectrometer sample chamber by a coax cable via 
a Microdot-to-BNC connector. An Ithaca Model 1201 low noise, wide bandwidth pre- 
amplifier was used to amplify the P*E signals to levels compatible with the analog-to- 
digital converter (ADC) of the DA3 (-O.l-1OV). The output of the pre-amp was 
connected directly to the input board of the spectrometer, thus completing the 
FTIR-P*ES circuit. Signal processing of the diffuse reflectance InSb detector was carried 
out using standard DA3 amplification and detection circuitry. Data acquisition and 
spectroscopic manipulations were performed using standard Bomem software for both 
reflectance and transmittance channels. 

The samples chosen for the spectroscopic experiments consisted of powdered NarCO,. 
This material was able to satisfy the majority of requirements for testing our theory: it 
possessed a well-defined bulk absorption band in the 2115 cm-’ region (identified during 
preliminary FTIR spectral scans); the absorption was not saturated even for thick 
specimens; the powders exhibited well-defined particle sizes easy to separate after 
sieving; samples of small thickness could be easily prepared to monitor the transmittance 
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Fig. 10. Schematic view of combined DRIFTS and DTIFTS measurement geometry in the 
Bomem DA3 FITR spectrometer sample chamber. 
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Fig. 11. (a) Normalized DRIFT and (b) normalized DTIFT spectrum of NarCOs powders. 
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arrows point at the peak used in the quantitative analysis. Insert in (b): P’E phase spectrum of 

the 2115 cm-’ peak region. (See text for details.) 

signal; and the important requirement of depth homogeneity throughout the bulk of the 
loose powder could be easily and reproducibly satisfied largely free from clustering or 
agglomeration. The powder Na2COs was obtained after thermal treatment of NaHCOa at 
250°C for 1.5 h. It is believed that the absorption feature is a combination band of 
fundamentals at lower wavenumber, although its exact origin is not clear. An absorption 
feature was previously observed [19] in the 2300 cm-’ range of a NazC09. lOH,O mull. 
Spectral feature shifts are expected between suspensions and loose powders, however, 
direct comparisons are hard to make, due to the nominal absence of Hz0 from our 
samples, and the fact that there was no indication of water in the sample spectra in the 
region around 3500 cm-’ (Fig. 11). The powders were ground and sieved, and several 
average diameter ranges of randomly-shaped particles were obtained satisfying the 
principal requirement of the theory that particle size be large compared to the maximum 
optical wavelength (5pm at 2OOOcm-‘). In addition, smaller size particle powders of 
silica were used to test practical validity limits of the foregoing theory due to the 
commercial unavailability of small diameter/size Na2C03 powders. These samples were 
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LiChroprep Si 100 silica powders from E. Merck AG, Lausanne, Switzerland, 
25-40pm nominal diameter range. Subsequently, they were treated chemically with two 
aminosilane reagents: one containing a cyano group recently synthesized in our labora- 
tory: dimethyl-(5cyano-3, 3-dimethyl pentyl)-(dimethyl amino silane) with chemical 
formula [20] (CH3)NSi(CH3)&H&N, abbreviated as DMP.CN; and a reference 
reagent: (3,3-dimethyl butyl)-dimethyl-(dimethyl amino) silane with chemical formula 
[21] (CH3)2NSi(CH3)2C6H13, abbreviated as DMB. The silylation reaction 

Si-OH + (CH3)2NSi(CH3)2R+ Si-G-Si(CH3)ZR + (CH3)2NH t 

using the two above-mentioned aminosilanes yields two sets of product powders: one 
exhibiting an absorption band centered at 2250 cm-’ due to -C=N groups, and another 
(reference) powder with nearly the same structure, but without the cyano group or the 
absorption band around 2250 cm-‘. Thus, small-size powders exhibiting surface, rather 
than bulk, absorption were prepared, with stack inhomogeneities in the bulk due to 
electrostatic clustering. 

KBr powders from E. Merck AG, Lausanne, Switzerland, were used as a reference for 
absolute diffuse reflectance measurements. They were finely ground in a Wig-L-Bug mill 
capsule (Crescent Manufacturing Co., Chicago, IL) to sizes less than 20pm. 

s. EXPERIMENTAL, RESULTS AND DISCUSSION 

The Globar source and beam splitter compartments of the spectrometer were eva- 
cuated during the experiments (-10e5 torr). The sample chamber was purged with dry 
nitrogen for 5 min before all spectra acquisitions in order to eliminate residual absorp- 
tions due to atmospheric water and COZ. DRIFT and DTIFT spectra were obtained 
sequentially. The former were normalized by the (assumed) 100% reflecting semi- 
infinite thickness KBr spectrum. The latter were normalized by the blackbody spectrum 
of the empty, soot-coated PVDF sample holder/detector. 

Typical spectra recorded from Na,CO, powders of sizes between 80-lOOpurn (ca 16-20 
times higher than the maximum wavelength) and thickness ca 3OOpm are shown in Fig. 
11. The spectra were obtained using crossed polarizers in the optical paths of the 
incoming and reflected optical beams, so as to minimize contributions to the diffuse 
reflectance from specularly reflected radiation [22]. BRIMMER and GRIFFITHS [17] have 
effectively shown that crossed polarizers actually pass more front surface reflection that 
is collected off-axis than aligned polarizers. Experiments with the BOMEM instrument 
in this laboratory using crossed and aligned polarizers showed that the polarization is 
conserved with the Harrick DR accessory and thus most of the specular reflectance is 
eliminated with crossed polarizers. With large-size powders it was found necessary to use 
small thicknesses in order to have a measurably large, reproducible DTIFT spectrum: 7 
and 14 mg of powder were used to obtain ca 150 and 300,um thicknesses, respectively. 
The powders were placed on the sample holderlP*E detector and were agitated 
(vibrated) mechanically until a homogeneous layer was obtained. The degree of 
homogeneity was deemed satisfactory if FTIR spectra obtained with the exciting beam 
focused on different locations on the powder surface were roughly identical in intensity. 
No baseline corrections in the spectra of Fig. 11 have been made, in agreement with the 
absolute kd absorptance nature of the theory in Section 2. 

The absorption band centered at 2115 cm-’ was further digitized from DRIFT and 
DTIFT spectra and the absolute reflectance and transmittance signals were converted to 
values of kd using theoretical plots similar to those shown in Fig. 5. Optical absorption 
coefficient spectra were determined by varying the X, value and adjusting the number of 
layers N for optimal overlap between DRIFlY and DTIFT originating spectra. Then, the 
effective value of d was calculated from L/N, Fig. l(a), and was checked for self- 
consistency with the range of d values resulting from sieving. This procedure amounts to 
a unique identification of two unknown (adjustable) parameters, x, and N, from two 
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equations (one for reflectance and one for transmittance) at each wavenumber through- 
out the entire spectral region of interest, with the minimization of the difference in the 
two values for k(L) between the R&, and T&-derived spectra as the guiding criterion at 
each A. Out of these two parameters, the value of N could subsequently be verified 
independently through comparison with actual powder geometries. This comparison 
yielded, in all cases, very good agreements between the (initially guessed and subse- 
quently “fine tuned”) integral value of N from the theory, and the (generally non- 
integer) value of N calculated independently from knowledge of the container volume 
and the average sieved particle size of the powder. Thus the value x, remains as the only 
quasi-arbitrary (i.e. not independently verifiable) parameter subject, however, to 
stringent requirements for optimization of the overlap between DRIFT and DTIFT 
spectra. 

Figures 12 and 13 show results from these operations. The effective particle diameters 
were 

(d)=~-)x(3M)+30pm)=75f7pm (60) 

from Fig. 12, and 

(d)=~-+X(150f2O~m)=75il0~m (61) 

from Fig. 13. Clearly, these values are consistent with the 80-1OOpm range of the sieve 
mesh. Due to the uncertainties in the actual particle size, the absolute k(A) scales are 
believed to be accurate to within 10% of the actual k values. The n value chosen (1.46) 
for Na&O, is the average of published values [23] of sodium carbonate and its 
decahydrate, strictly valid for excitation at the sodium light visible line (589.3 nm). These 
values are 1.535 and 1.405, respectively. Within this range, the sensitivity of either the 
R(k) or the T(k) curves on the absolute value of the refractive index is not high (less than 
5%) (1.4 < n < 1.55), as shown in Figs 6(a) and 7. On the contrary, the theoretical 
sensitivity of these curves, and especially the T(k) curve, on the actual N-value is very 
high, as observed in Fig. 8(b). Finally, in the range of diffuse reflectance values obtained 
experimentally from the samples in Figs 12 and 13, 0.30~ Rz~0.39, the actual value of 
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Fig. 12. Absolute optical absorption coefficient spectra of the band indicated by arrows in Fig. 11. 
0: DRIFT-derived spectrum; 0: DTIFT-derived spectrum. Parameters used in Eqns (47) and 
(48) for the best possible overlaps: N = 4, x, = 0.5, n = 1.46. The error bars indicate deviations of 
hvo sets of FlIR spectra taken several days apart with different samples of 300 + 3Opm thick, 

14 mg powders. 
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Fig. 13. Absolute optical absorption coefficient spectra similar to those in Fig. 12, from 150+ 
20pm thick, 7 mg samples. The error bars indicate deviations of two sets of spectra taken several 
days apart with different specimens. 0: DRIFT-derived spectrum; 0: DTIFT-derived spectrum. 

Parameters used in Eqns (47) and (48): N = 2, x, = 0.5, n = 1.46. 

x, producing acceptable overlap with the transmittance spectrum had a tolerance 
0.4~~,~0.7, with optimum overlap for x, = 0.5. This range was primarily determined 
from the diffuse reflectance signal and its x;dependence in Fig. 5(a). As shown in Fig. 
5(b), the diffuse transmittance is little sensitive to the X, value. The agreement between 
the absorption curves derived from DRIFTS and DTIFTS in Fig. 12 is quite good, with 
the worst differences less than 10% on the low energy side (2090-2115 cm-‘) where the 
photon throughput is relatively low. The ca 10% variation in k(A) is within the general 
uncertainty of the (d) value for the experiment. 

Figure 13 shows a blue shift of the P’E transmittance peak with respect to the DRIFT 
spectrum by ca 11 cm -I. The origin of this shift is not entirely clear, however, it is 
believed to be due to the thermal wave nature of the P2E signal generating the DTIFT 
spectrum. At the wavenumber P position of the peak, 2115 cm-‘, the interferogram 
intensity modulation frequency for the P2E data of Fig. 13 at u = 0.03 cm/s is [24] 

f= 2vv = 127 Hz. (62) 

The thermal diffusion length in the powder at the given modulation frequency is given by 
the expression [25] 

pus(f) = (oMY2 (63) 

where Q, is the powder thermal diffusivity. Although no readily available value for 
Na2C03 could be obtained from the literature, the order of magnitude was assumed to be 
-10T3 cm2/s, in view of the measured values for K2Cr207 powders [26], a, = 1.4 X 

10e3 cm2/s, and for CaC03 powders [27], a, = 1.56 X 10s3 cm2/s. Using aN@-& = 1.5 X 

lob3 cm2/s gives the value 

i~~~~c~~(l27 Hz) = I9pm. (64) 

For a powder thickness of 150 f 20pm, i.e. 6.8-8.9 thermal diffusion lengths, there is 
evidence [12] that corrections to slightly distorted FTIR spectra are required, due to 
thermal diffusion contributions to the P2E signal. No such corrections would be 
necessary for the 300 + 30pm powder, the thermal behavior of which is expected to be 
fully decoupled from the PVDF response to directly transmitted radiation [15]. Very 
small ripples in the FTIR-P2E phase spectrum (A$<4”) corresponding to Fig. 13 in the 
immediate vicinity of the DTIFT peak at 2126 cm-’ were found to exist in anti- 
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correlation with the peak structures, thus giving further strong support to a photothermal 
origin of the shift [28]. It should be mentioned that no such correlations were found 
between the 3OOpm sample absorption peak, Fig. 11(b), and its phase ripple (insert, Fig. 
11(b)]. Figures 12 and 13 show that the spectral position of the DRIFT-originating band 
remains unshifted for both powder thicknesses. The fact that both best overlaps occurred 
with X, = 0.5 is particularly significant, since it indicates similar geometric configurations 
in the body of both powders, i.e. we were able to essentially reproduce the same 
approximately homogeneous depth profile of the particles with mechanical means. 

Figure 14 shows k(lZ) spectra of sieved Na,C03 powders of nominal sixes 30-6Opm and 
thickness cu 150 f 30pm. The agreement of the absolute values of k(L) with those of Figs 
12 and 13 is within 15%) a very good quantitative result, in view of the widely different 
powder geometries. Due to the lower reflectance signals of this size powder, compared to 
the larger sixes of Figs 12 and 13, the theoretical diffuse reflectance sensitivity to the 
value of x, increased significantly, as observed for low RGrange values in Fig. 5(a). As a 
result, the range of x, values producing acceptable overlaps between reflectance and 
transmittance spectra was, in this case, 0.05 <x,<O.15. Figure 14 exhibits the same blue 
shift of the DTIFI peak as that observed in Fig. 13. Best overlap was achieved with N = 4 
and X, = 0.1 in Eqns (47) and (48). The N value gives (d) = 37.5 f 7.5 pm consistent with 
the nominal dimensions. The lower x, value is indicative of the smaller size particles 
(higher packing density), and according to its definition [5] represents a lower probability 
for diffuse scattering in the upward direction than the larger particles. This is reasonable, 
as the smaller sized particles are expected to be more spatially uniform, scattering 
centers through a 4~r steradian solid angle, than larger particles. In the limit of very large 
particles, it is intuitively expected that the upward scattering fraction will be greatly 
enhanced, at the expense of sideways and downward scattering. These hypotheses are 
further consistent with the theoretical x,-dependence trends of Figs 4(a) and (b) and with 
the discussion of those trends. 

Experiments were also performed with semi-infinite Na&O, powder thickness. The 
DRIFT spectrum is shown in Fig. 15, corresponding to conventional practice in diffuse 
reflectance spectra acquisition [24]. In this case, however, there exists an independent 
criterion of quasi-infinite thickness in the mid-IR range, for the first time to the authors’ 
best knowledge: the complete absence of transmittance as measured by the P*E 
blackbody detector in direct and intimate contact with the sample. The conventional 
spectrum shown in Fig. 15 is in good quantitative agreement with those of Figs 12-14 
with a reproducibility from powder to powder to within lo-15%. This degree of 
agreement between spectra was achieved by setting X, = 0.5 for the 80-1OOpm powders, 
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Fig. 14. Absolute optical absorption coefficient spectra of 30-60pm diameter NazCOJ powders, 
150 + 30pm thick, 7 mg samples. Parameters used in Eqns (47) and (48): N= 4, x, = 0.1, n = 1.46. 

0~ DRIFT-derived spectrum; 0: DTIFT-derived spectrum. 
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Fig. 15. Absolute optical absorption coefficient, DRIFT-derived spectrum of Na2C03 powders, 
80-1OOym in diameter, and semi-infinite thickness (3 mm, 140 mg). Parameters used in Eqn 

(47): N=37,x,=0.5, n=1.46, d=80pm. 

an excellent indication that the depth profiles and packing densities of the ‘semi-infinite’, 
3 mm thick stack, and those of the thinner stacks (3OOpm and 150pm) of 80-lOOpm-size 
particles were similar. The fact that the chosen Na2C03 absorption peak at 2115 cm-’ is 
not very strong, Fig. 11(a), led to a non-saturated spectrum in Fig. 15 without the need of 
powder dilution in KBr. 

Finally, some important issues of practical limits of validity for the foregoing quantita- 
tive spectroscopic analysis were investigated in terms of the sensitivity of the theory to 
relative values between optical wavelength and particle size and uniformity. The theory 
presented in Part 2 is rigorously valid in the theoretical limit d %A. Experimentally, the 
theory was found to yield reasonable quantitative k(l) spectra for (d)=37.5 +7.5pm, 
Fig. 14, i.e. for (d)=8Apeak(12peak =4.73pmC*2115cm-‘). For the purpose of finding 
some experimental limitations of the theory, the absorption band of -CN in the surface 
absorbed C,,H,,,NSi on silica centered at 2250 cm-’ was recorded by the DRIFTS and 
DTIFTS methods and the FI’IR spectra were normalized by the KBr reference spectrum 
and the blackbody spectrum, respectively, as outlined earlier. 

The powders had nominal diameters in the 25-40pm range. In order to obtain 
reproducible surfaces (and presumably particle depth profiles), a pressure was applied 
with a precision mechanical lever on the surface for 30 s and the powder was allowed to 
relax during that period. This treatment assured very good reproducibility of the 
measured spectra in both channels, however not entirely uniform powder stacks were 
obtainable due to interparticle electrostatic interactions leading to some clustering. In 
order to obtain good quality transmission spectra an optimal thickness of 300 f 30 ,um 
was chosen. The powders exhibited no measurable transmission for L 2400,~rn. Such 
thicknesses were assumed to yield the semi-infinite response, a fact which was confirmed 
from the invariance of the diffuse reflectance with increasing powder thickness in the 
0.4-2.0 mm range. 

Figure 16 shows the best overlap of k(A) spectra obtained using Eqns (47) and (48). 
For these calculations the value n = 1.46 for silica was used [29]. The optimal value 
N = 10 gave 

(d)=~~~x(300~30”m)=30~3”m (65) 

consistent with the nominal value range. It can be seen from the figure that no 
quantitative consistency is possible between the DRIFTS-derived and DTIFTS-derived 
k(A) values, even for unrealistically low values of x,, a result of the breakdown of the 
validity of our model. Independent measurements of k(2250 cm-‘) have been performed 
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using the transmittance from liquid solution of C,rH&l$i, which exhibits the same 
(CN)-group spectroscopic behavior as the Cr,,H&lSi compound. These measurements 
yielded 

k(2250cm-‘)=32f4cm-’ (66) 

i.e. a value close to the DTIFTS data peak values. Clearly, the stack uniformity, the bulk 
absorption coefficient, and/or the d+A assumptions were not valid in the range 

(d) 6 (6.75 + 0.7)1 (67) 

for the surface-treated silica powders. 
As an immediate consequence, it is expected that, if the violation of the last 

assumption is important, particle sizes in this range should exhibit continuum behavior, 
in view of the breakdown of the present discrete behavior approach. In order to test this 
hypothesis, the degree of agreement of the behavior of ‘semi-infinite’ powder layers with 
the simple semi-infinite layer Kubelka-Munk function [l] 

k (l-R,)* 
;=F(R,)= 2R 

m (68) 

was examined. In Eqn (68), R, is the value of the diffuse reflectance from a semi-infinite 
layer (L-+m) and F(R,) is the Kubelka-Munk function, defined as the ratio of the 
powder optical absorption coefficient k and the scattering coefficient s. 4OOpm thick 
powders identical to those of Fig. 16 were used as mixtures of the cyano-modified silica 
and the alkyl-modified silica. The cyano-modified silica concentration was varied 
between 2.5 and 100%. Subsequently, the DRIFT values of the peak at 2250 cm-’ were 
plotted as a function of the cyano-modified silica percentage (c) in the Kubelka-Munk 
plot of Fig. 17. The straight line behavior of F[R,(c)] vs c = [CiVj indicates that the 
assumption of a concentration-independent scattering coefficient s is valid and thus 

k=k(c)a[CZVl. (69) 

The straight line fit of Fig. 17 demonstrates that Eqn (68) is valid for the silica powder 
samples. This observation carries the important interpretation that powders of particle 
sizes smaller than cu 7rl, Rel. (67), behave optically like a completely continuous material 
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Fig. 16. Absolute optical absorption coefficient spectra of 100% C,,&,NSi powders, 300 f 3Opm 
thick, 25-4Opm nominal d. Parameters used in Eqns (47) and (48): N= 10, x,=0.01, n= 1.46. 

0~ DRIFT-derived spectrum; 0: DTIFT-derived spectrum. 
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Fig. 17. Kubelka-Munk function vs [CN] concentration of mixtures of silica powders with 
C,P,aNSi and CsH,$i surface groups. Powder size: 4OO~m. 

layer, for it is only in this limit that the Kubelka-Munk formalism [30] is strictly valid. 
Furthermore, it appears that depth inhomogeneity is not particularly serious in these 
stacks, as witnessed by the goodness of fit of the data to the simple Kubelka-Munk 
expression for homogeneous particle layers throughout the entire concentration range. 
In Fig. 17 the intercept of the straight line is not at c = 0, as expected, due to the residual 
absorption in the silica reference powder. 

Very recently two papers from GRIFFITHS’ group [31,32] have dealt with diffuse 
reflectance and diffuse transmittance spectroscopy of self-supported samples in the 
small-size particle (continuum) limit. Although the treatments therein are not in the 
large particle-geometric optic regime, with which the present work deals exclusively, 
nevertheless, the set of those papers and the present treatment constitute three of the 
only investigations in which diffuse transmittance has been reported in any detail. 

6. CONCLUSIONS 

In this work an exact, self-consistent discrete theory of diffuse reflectance and 
transmittance for large particle-size powders was developed and applied to experimental 
data from FTIR spectroscopic measurements using the conventional DRIFTS technique 
and a new photopyroelectric DTIFTS method for monitoring reflectance and transmit- 
tance sequentially. Good quantitative measurements of mid-IR optical absorption 
coefficient spectra of loose powders were thus made possible under a wide variety of 
optical, geometric and packing density conditions. It was further shown that the theory 
breaks down when the bulk absorption, stack homogeneity, and d% 1 assumptions of the 
model do not hold, for particle sizes smaller than cu 7 x the wavelength of the exciting 
radiation, in which case the conventional continuum interpretation holds. 
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