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ABSTRACT 

Cardiovascular related diseases are ranked as the second highest cause of death in Canada. Among the most important 
cardiovascular diseases is atherosclerosis. Current methods of diagnosis of atherosclerosis consist of angiography, 
intravascular ultrasound (IVUS) and optical coherence tomography (OCT). None of these methods possesses adequate 
sensitivity, as the ideal technique should be capable of both depth profiling, as well as functional imaging.  An 
alternative technique is photoacoustics (PA) which can perform deep imaging and spectroscopy. The presented study 
explores the application of wavelength-modulated differential photoacoustic radar (WM-DPAR) for characterizing 
arterial vessels. The wavelength-modulated differential photoacoustic technique was shown to be able to substantially 
increase the dynamic range and sensitivity of hemoglobin oxygenation level detection. In this work the differential PA 
technique was used with a very high frequency modulation range. To perform spectroscopic PA imaging, at least two 
wavelengths are required. The selected wavelengths for this work are 1210 nm and 980 nm. 1210 nm corresponds to the 
maximum optical absorption coefficient of cholesterol and cholesteryl esters which are the main constituents of plaques. 
Since water, elastin and collagen also have high absorption coefficients at 1210 nm, this wavelength alone cannot 
provide very high sensitivity and specificity. The additional wavelength, 980 nm corresponds to high absorption 
coefficient of those constituents of healthy artery tissue. The simultaneous application of the abovementioned 
wavelengths can provide higher sensitivity and improved specificity in detecting lipids in the arterial vessels. 
 
Keywords: Intravascular photoacoustic imaging, photoacoustic endoscopy, photoacoustic spectroscopy, frequency-
domain photoacoustics, waveform engineering. 
 

1. INTRODUCTION  
According to Statistics Canada, in the year 2012, 61,855 deaths were recorded due to cardiovascular related diseases. 
This accounts for 25% of the total number of deaths in Canada in that year. Among the most important cardiovascular 
diseases is atherosclerosis, a chronic disease occurring with gradual build-up of lipid rich plaques in the inner layer of the 
arterial wall. Angiography, intravascular ultrasound (IVUS) and optical coherence tomography (OCT) are currently 
employed by clinicians for diagnosis of atherosclerosis. None of these methods is capable of both depth profiling and 
functional imaging. Photoacoustic (PA) imaging is an emerging technology for intravascular imaging and 
characterization.2-11 The spectroscopic and deep imaging capabilities of PA makes it an ideal candidate for diagnosis of 
atherosclerosis. Furthermore, since plaques are located superficially, optical scattering is minimal. Therefore, PA 
functional imaging faces fewer challenges than the case of deep targets.12 Diagnosis of atherosclerosis by PA is mainly 
based on detection of lipids in the arterial wall. Allen et al.7 focused on some of the important constituents of healthy 
arterial walls and plaques in the 740 to 1400 nm wavelength range. To isolate the plaque boundary and enhance the 
specificity of lipid-rich plaque detection, they employed two wavelengths; 1210 nm and 980 nm.  
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The first wavelength, 1210 nm, is located at the lipid absorption peak. Since the main components of a healthy arterial 
wall (mainly water, elastin and collagen) have a high absorption coefficient at 1210 nm, the second wavelength is also 
required. Water, elastin and collagen have strong optical absorption at 980 nm, while, the lipid optical absorption 
coefficient is weak at this wavelength. By using difference imaging at the abovementioned wavelengths, they showed the 
possibility of detecting fatty plaques with high specificity. The present paper is based on the real-time application of a 
similar idea. We demonstrate that simultaneous emission of two out-of-phase continuous-wave (CW) lasers makes it 
possible to enhance the specificity, sensitivity and speed of imaging.  
CW intensity-modulated laser PA has some unique capabilities. The phase in the frequency-domain (FD) PA provides an 
extra channel that facilitates imaging and probing. It can be used to enhance the image resolution and contrast.13,14 Phase 
can also provide a calibration-free technique for functional imaging.15 Another unique capability of FD-PA is 
simultaneous multi-wavelength irradiation that enhances the speed of probing and imaging.16 Wavelength-modulated 
differential PA is  a technique that has been employed for detection of oxygen saturation level of hemoglobin and was 
shown to be capable of increase in  detection sensitivity and dynamic range.17,18  The presented study extends the 
application of wavelength-modulated differential PA to endoscopy. We employed two simultaneous out-of-phase linear 
frequency modulation chirps to distinguish lipids.  

2. THEORETICAL BACKGROUND OF DIFFERENTIAL FREQUENCY-DOMAIN 
PHOTOACOUSTIC SPECTROSCOPY 

To enhance the specificity of atherosclerosis diagnosis by differential FD-PA, the PA signal should be able to 
differentiate between normal tissue (background) and fatty plaque. This can be performed by employing two lasers with 
proper wavelengths. The idea is to simultaneously transmit two intensity-modulated chirps with identical sweep 
frequencies while there is a constant phase difference of approximately π between the waveforms. These two lasers with 
specific wavelengths are employed simultaneously to induce PA signals on one chromophore. The wavelengths are 
chosen in a way that the two PA signals cancel each other out for the case of healthy tissue. However, if tissue consists 
of lipids, due the high absorption coefficient at one wavelength and low absorption coefficient at the other wavelength, a 
strong signal is generated. The two abovementioned wavelengths of 980 nm and 1210 nm are chosen for this application. 
The absorption coefficient spectra of main constituents of healthy tissue; water, elastin and gelatin versus lipids shows 
the rationale for selecting these wavelengths. All of the main components of healthy tissue have very similar absorption 
coefficients at 980 nm and 1210 nm. It helps to eliminate the PA signal from these components and generate a zero 
baseline. On the other hand, lipids, cholesterol and cholesteryl esters in particular, have a very high absorption 
coefficient at 1210 nm and a very low absorption at 980 nm. Based on these facts we can develop an analytical 
formulation for this problem. The two linear frequency modulation (LFM) chirps can be described as follows: 
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where I1 and I2 are  the intensities of the two lasers, and A1 and A2 are the corresponding amplitudes. Tch is the chirp 
duration, Bch is the chirp bandwidth, ωc is the mean angular frequency of the chirp and, φ is the phase difference between 
the two chirp waveforms. The cross-correlation signal based on 1D solution for one of the wavelengths is (Fig.1):19 
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where f1 and f2 are the starting and ending frequencies of the chirp, respectively, Γ is the Grüneisen parameter, Htr and η 
are the transfer function and sensitivity of  the ultrasonic transducer, respectively; c is the speed of sound in the tissue; 
μa1 is the absorption coefficient of the component at wavelength #1; μeff1 is the effective optical attenuation coefficient of 
the overlying tissue at laser wavelength #1; L1 is the thickness of the scattering overlayer medium; L is the distance of 
the transducer from the absorber surface. Since atherosclerotic plaque is located within a very shallow depth underneath 
the surface (L1 is very small), the optical attenuation term can be ignored. It should be added that due to the very high 
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