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ABSTRACT   

In this study, we present some examples of waveform engineering applications in frequency-domain photoacoustics (FD-
PA). Linear frequency modulation (LFM) has been employed in many different fields such as radar, sonar, ultrasound 
and photoacoustics to perform temporal encoding of the transmitted signal. Encoding the transmission and matched 
filtering in receive mode tends to increase the signal-to-noise ratio (SNR) while maintaining the resolution. One example 
of using LFM for photoacoustic spectroscopy is the capability of simultaneous probing/imaging with multiple 
wavelengths. Use of mismatched coded waveforms enables encoding the signal sources and, therefore, facilitates 
simultaneous probing and imaging. This method enables high frame rate functional imaging with reduced motion 
artifacts. Furthermore, it is shown that the phase of the cross-correlation of the PA signal modulated with a linear chirp 
can yield the absolute absorption coefficient of the chromophore. This method is not affected by attenuation of the 
fluence due to the absorption and scattering of the overlayer material. Therefore, the method provides a calibration-free 
approach for quantitative PA imaging. These are some of the features of PA using linear frequency modulation chirp. 
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1. INTRODUCTION  
The flourishing of modern biomedical photoacoustics (PA) for the most part owed to its spectroscopic capability.  PA 
functional imaging can provide a significant impact in preclinical and clinical medicine by characterizing physiological 
changes and diagnosing the extent of diseases.1,2 One of the regular targets of PA spectroscopy (PAS) is blood, where 
PAS help identify and monitor tumor angiogenesis, tumor blood oxygen saturation, and metabolic rate.3 Thus,  PAS can 
help differentiate between healthy tissue and tumorous lesions, or benign and malignant tumors.  Despite the successful 
record and achievements of PAS, there are some significant challenges that prevent the generation of an accurate 
quantitative map of the tissue constituents.4,5 Different approaches have been pursued to enhance the accuracy of PAS. 
One method is to extract the absorption coefficient from the risetime of the PA response.6,7,8 Also, the use of acoustic 
spectra of PA signal vs wavelength provides a calibration-free approach for blood characterization.9,10 A very different 
approach is to perform numerical analysis of the laser light diffusion in the tissue while accounting for absorption and 
scattering of the surrounding tissue.11,12 This paper introduces a new approach to resolve these issues.         
The frame rate of PA imaging and spectroscopy is another factor that will be addressed in this paper. Fast imaging helps 
reduce motion artifacts. Fast imaging is also a vital requirement for many image-guided intervention applications. These 
reasons initiated many attempts to increase the PA imaging frame rate or reduce the delay between multiple wavelength 
emissions employed for PAS.13,14 The capability of frequency-domain (FD) PA in detecting tumor angiogenesis has been 
demonstrated before.15 Additionally, due to the fine control over the excitation frequency range, FD-PA facilitates the 
spectral analysis of the signal.16,17 Using FD-PA provides possibilities for waveform engineering that can be employed to 
enhance specificity, sensitivity, and efficiency of PAS. A few examples of the use of waveform engineering in FD-PA, 
and particularly PAS are introduced here. 
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3. PHOTOACOUSTIC PHASE SPECTROSCOPY  
To enhance the sensitivity of frequency-domain PAS, it can be shown that the phase of the PA cross-correlation is 
affected by the absorption coefficient of the subsurface laser-stimulated chromophores. In the 1D case, the mathematical 
complexity can be simplified. Therefore, it is both instructive and helpful to demonstrate the analytical relationship. The 
1D PA signal generated from a flat semi-infinite absorber is:21 
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where the tilde indicates the Fourier transform operation; ks=ω/cs

 
is the acoustic angular wavenumber; ω is the angular 

frequency, ω=2πf; ca (cs) is the speed of sound in the absorbing (scattering) medium; ρa (ρs) is the density of the 
absorbing (scattering) medium; μa is the absorption coefficient of the absorbing medium; Γ is the Grüneisen parameter; 
μeff is the effective optical attenuation coefficient of the scattering medium; L is the thickness of the scattering overlayer 
medium (the distance of the transducer from the absorber surface); Io is the laser intensity on the surface. Applying the 
1D theory for linearly modulated laser excitation from frequency f1 to f2, the cross-correlation can be calculated. The 
bandwidth of the chirp is Bch=f2-f1. The phase of the cross-correlation signal at distance L (corresponds to the surface of 
the chromophore) from the transducer is estimated as:  
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Equation (2) shows that the phase of the CC signal is independent of fluence and Grüneisen parameter (Γ). The phase of 
the CC signal at delay time t=L/cs can readily yield the absorption coefficient of the chromophore: 
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This formula can be used to obtain the absolute absorption coefficient using only one wavelength. A very simple 
experiment can demonstrate the feasibility of extracting the absorption coefficient of the chromophore from the phase of 
the PA CC signal. Three PVC-plastisol samples with the approximate absorption coefficients of 4, 6 and 9 cm-1 were 
produced. The measured in-phase and envelope CC from these samples employing an LFM chirp 300-2.6 MHz is shown 
in Figs. 4(a) and (b). One of the samples (9 cm-1) was employed to calibrate the measurements. The absorption 
coefficients of the other samples were estimated accordingly as 7.2 and 3.7 cm-1. The detected signal can be 
deconvoluted from the effect of the transducer by applying Wiener filtering. One measurement (sample with 9 cm-1 
absorption coefficient) was used to obtain the Wiener filter and thus deconvolute the CC signals. From Eq. (3), the 
absorption coefficients of the other two samples can be obtained through knowledge of the value of t=L/cs. To calculate 
t, a set of iterative calculations were performed. First, the delay time corresponding to the peak was used to estimate the 
µa value. Then, the obtained µa value was used and the error between the theoretical and experimental signal shape was 
found, thereby fixing the delay time t as that which minimizes the error. Through the iterative calculation, best-fitting 
and correction, the delay time and corresponding µa were obtained. As a result the estimated values of the absorption 
coefficients of the two samples were also obtained: 5.8 and 4.1 cm-1. 
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Fig.4 The (a) in-phase and (b) envelope cross-correlation signals from three PVC plastisol samples. (US Trans. 3.5 MHz, 
Laser light 805 nm, Bandwidth 0.3-2.6 MHz).   

 
As seen from Eq.(3), L should be known or determined to obtain the μa values. To simplify the application of the 
method, one can use an extra wavelength. sing the differences between the absorption coefficients of a chromophore in 
two wavelengths with no need of absolute values, the tissue can be characterized. Using a Taylor expansion of Eq.(2) for 
two wavelengths, we obtain:  

 

 
  (4) 

 

Using well tabulated optical properties of blood, the method can readily be employed for blood spectroscopy. The 
benefit over using the amplitude values is that the absorption and scattering of the overlaying tissue induces fewer errors. 
Further experimental results probing in-vitro sheep blood are described elsewhere.22  

4. SUMMARY 

In this study, we present some examples of waveform engineering applications in frequency-domain photoacoustics (pa). 
On example of using linear frequency modulation for photoacoustic spectroscopy is the capability of simultaneous 
probing/imaging with multiple wavelengths. Use of mismatched coded waveforms enables encoding the signal sources 
and, therefore, facilitates simultaneous probing and imaging. This method enables high frame rate functional imaging 
with reduced motion artifacts. Furthermore, it is shown than that phase of the PA cross-correlation induced with a LFM 
can yield the absolute absorption coefficient of the chromophore. This method is not affected by attenuation of the 
fluence due to the absorption and scattering of the overlayer material. 
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