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A B S T R A C T

Recent developments in photoacoustics have witnessed the implementation of a radar matched-filtering meth-
odology into the continuous wave photoacoustic modality. The main merit of using matched filtering in con-
tinuous photoacoustics is the improvement in signal to noise ratio (SNR), but the correlation process may result
in a loss of resolution. It is possible to enhance both SNR and resolution by matched-filtering and pulse com-
pression with a frequency chirp. However, the theory behind the effect of the chirp parameters on both SNR and
resolution is still not clear. In this paper, the one-dimensional theory of the photoacoustic radar with a pulse
compressed linear frequency modulated sinusoidal laser chirp is developed. The effect of the chirp parameters on
the corresponding photoacoustic signal is investigated, and guidelines for choosing the chirp parameters for
resolution and SNR optimization are given based on theory and simulations. The results show that by judiciously
manipulating the center frequency, bandwidth, and duration, the resolution and SNR can be easily enhanced.

1. Introduction

Frequency-domain photoacoustic (FD-PA) imaging for biomedical
applications has attracted interest over the past decade, with important
applications still under development [1–4]. This imaging modality
works through irradiation of an absorbing material (absorber, or
chromophore) by a laser source. The energy absorbed produces a small
temperature rise, which induces excess pressure inside the sample
through thermoelastic expansion. This pressure acts as an acoustic
source and generates further acoustic waves, which can be detected by
ultrasound transducers positioned outside the sample. Since there is a
large difference in optical absorption between blood and surrounding
tissue, the ultrasound wave induced by laser irradiation carries in-
formation about the optical absorption properties of blood bearing
tissue. This approach is thus suitable for the imaging of the micro-
vascular system or for tissue characterization.

The most common excitation source for photoacoustics has been
pulsed electromagnetic waves, for example in the work by Kruger [5,6]
and Wang [7–9]. The key advantage of using a short pulse to irradiate
the tissue is that the distribution of heat sources can be directly as-
certained from the shape of the photoacoustic response signal [10].
However, there are still challenges to implement pulse photoacoustics.

For example, the pulsed laser modality is limited by incident energy
levels that must meet safety standards for in-vivo tissue imaging [11].
The short nanosecond incident pulse will generate a wide-band PA
signal which requires a wide band transducer for detection. Moreover,
expensive and bulky Q-switched laser source, wide-bandwidth noise, as
well as the presence of often large signal baselines in pulsed photo-
acoustics are also pushing researchers’ interest to continuous wave
photoacoustics [11,12].

An alternative excitation modality that has also been proposed is
FD-PA, where the acoustic wave is generated by periodic modulation of
a laser [12–15]. More recently, the idea of implementing a pulse
compression approach via matched filtering was introduced and in-
vestigated [12,16–22], often referred to as the Photoacoustic Radar
(PAR). The matched filter approach enables detection of a known signal
immersed in Gaussian white noise, therefore a long duration coded
waveform with moderate power could potentially replace short high-
power pulses.

The major chirp modulated PAR advantages over conventional
pulsed laser PA imaging modalities are: 1) substantially higher image
acquisition frame rates (kHz) than Q-switched pulsed lasers, enabling
practical real-time clinical imaging, 2) small diode laser source foot-
print with the potential for portable multi-wavelength imaging
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applications, 3) two images (amplitude and phase-based) instead of one
at each probed subsurface depth for higher diagnostic power, 4) depth
selectivity via cross-correlation delay-time fixing (quick tomographic
slice localization and operator-controlled fixed-depth image formation),
5) comparable imaging axial resolution and SNR, 6) potential for real-
time, baseline absorption and signal distortion eliminating, differential
wavelength imaging. These features of PAR imaging using inexpensive
laser diodes and standard ultrasound transducers offer the exciting
possibility and unique opportunity of developing novel, portable com-
mercial clinical and preclinical co-registered ultrasonic-photoacoustic
(US-PA) imaging systems, with sub-mm axial resolution and optical-
level contrast with the aforementioned advantages over pulsed laser PA
imagers.

Signal to noise ratio (SNR), contrast, resolution, and depth sensi-
tivity are several aspects that need to be evaluated in order to assess the
performance of an imaging system. Different approaches have been
investigated to improve the performance of FD-PA, such as using a
contrast agent to improve the contrast of the image [23], using coherent
or incoherent averaging signal processing methods to increase the SNR
[12], and optimizing chirp parameters to improve SNR [20]. However,
the detailed theory behind optimizing the chirp parameters for PAR is
still not fully developed.

Recent research [24] showed that a chirp excitation PA system may
have lower SNR than the pulsed PA system. However, the effect of the
chirp parameters are still not clear. Lashkari and Mandelis have in-
vestigated the effect of chirp parameters on the SNR of PAR [20]. Their
experimental results showed that the chirp sweep range is one of the
key parameters that affect SNR. They demonstrated that the optimal
chirp sweep range tends to be in the low MHz range. For a frequency
transducer with 3.5MHz center frequency, they found that the optimal
chirp bandwidth was 0.5–3MHz, chosen from amongst three different
sweeping ranges (0.5–3MHz, 1–3MHz, 0.5–5MHz). For a lower fre-
quency transducer (0.5MHz center frequency), the optimal chirp
bandwidth was demonstrated to be 200–850 kHz. Keeping the lower
cutoff frequency of the chirp constant and increasing the upper limit did
not increase SNR significantly. Thus, they demonstrated that there is a
certain optimal bandwidth that can produce the best SNR. However, the
derived mathematical expressions do not fully explain this phenomenon
as only the effect of the chirp duration was considered in the theory.

In PAR, the profile of the cross-correlated signal (sometimes called
A-scan profile) is also an important way to obtain information about an
absorber. In most studies, the cross-correlated signal has only one re-
cognizable peak that reveals the front edge of the absorber (the ab-
sorber surface which is near the transducer) [17,19,20]. The theoretical
and experimental results in [12] have two peaks representing the front
and rear edge of the absorber. However, the profiles of the absorbers
were not fully obtained.

Although the photoacoustic radar promises to be an important de-
velopment towards overcoming the limitations of the short-pulse ap-
proach, a generalized theory still remains to be developed. In this
paper, such a one-dimensional theory is developed, and the effects of
the chirp parameters on SNR and resolution are investigated.
Additionally, the cross-correlated signal profiles are discussed in rela-
tion to the chirp parameters.

2. Formulation of the problem

2.1. Physical model and Fourier shell theorem

The governing equation for a PA wave is given by
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and is the thermal expansion coefficient, cs is the

speed of sound, Cp is the specific heat, µa is the optical absorption

coefficient of the chromophore absorber that has been heated by an
optical pulse with fluence F. p r t( , ) is the pressure of the acoustic
wave, a function of space and time. A r( ) is a function of space that
describes the geometry of the absorber and I t( ) is a function that de-
scribes the time dependence of the incident optical pulse. Diebold [25]
gives a concise explanation of the governing equation for the pressure
that results from launching a photoacoustic wave.

In this paper, our focus is on the spectral analysis of the design of
the input waveform I t( ), therefore to simplify geometrical effects, we
consider a one-dimensional Cartesian space, where position is a func-
tion of z only, so =r z Taking the temporal Fourier transform (denoted
with a tilde) and then a spatial Fourier transform (indicated as an
overhat) in the spatial variable z transforms z to the spatial frequency
variable z, and Eq. (1) becomes
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where =k c/ s is the angular wavenumber. It has previously been
shown [26] via inverse spatial Fourier transformation of Eq. (2) that the
pressure response in the temporal frequency domain to a source I t( )
with Fourier transform Ĩ ( ), and inhomogeneity A z( ) with spatial
Fourier transform Â ( )z is given by
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Here, >z 0 is to be interpreted as measurements in a transmission
mode and <z 0 as measurements made in reflection. Eq. (3) is the 1D
statement of the Fourier shell theorem for photoacoustics. For Eq. (3), it
is assumed that Â ( )z has no poles. If it does, a simple partial fraction
decomposition of Â ( )z can be used in Eq. (2) prior to the application of
the spatial inverse Fourier transform. Further analysis has shown that
even in the case that Â ( )z has a pole, Eq. (3) is still valid outside the
region of inhomogeneity (where a detector would be placed).

2.2. Transfer function and impulse response

A common method of studying linear processes is to view them as
linear systems and to study the input/output relationships. The system
impulse response or equivalently the transfer function/frequency re-
sponse are then convenient tools for characterizing input/output re-
lationships. To apply linear systems analysis to photoacoustic problems,
input and output quantities need to be defined. The photoacoustic
system model is shown in Fig. 1. This represents an absorbing inclusion
surrounded by scattering turbid tissue. We define the input quantity to
be the input optical pulse given by I t( ) and the output as the pressure
response time function measured at some fixed point, z, in space, given
by p z t( , ). The input/output relationship can then be interpreted as

Fig. 1. Photoacoustic system model.
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being given by Eq. (3), which may be written in input/output (transfer
function) form in the frequency domain as the product

=p z G z I˜ ( , ) ˜ ( , ) ˜ ( ) (4)

where the transfer function is given by
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Eq.s (4) and (5) clearly show that the transfer function is, un-
surprisingly, completely controlled by the shape of the absorber, A kˆ ( ).

The system impulse response can be computed via inverse temporal
Fourier transformation of the transfer function G z˜ ( , )
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Eq. (6) demonstrates that the temporal impulse response has exactly
the same functional form as the spatial shape of the inhomogeneity,
although at a fixed measurement location z it is a function of time,
whereas the shape of the absorber is a function of space. The two re-
sponses are related through the speed of sound converting factor. This
confirms results phrased in terms of retarded time by Diebold [25].

For an arbitrary input waveform I t( ), Eq. (4) can also be computed
in the time domain as a convolution of the input I t( ) with the system
impulse response g z t( , )

= =p z t g z I t d g z t I t( , ) ( , ) ( ) ( , )* ( )
(7)

The pressure response p z t( , ) is then received by a transducer and
passes through a receiver-filter with an impulse response r t( ) (or,
equivalently, transfer function R̃ ( )).

3. Signal to noise ratio and resolution

The photoacoustic measurement channel model is shown in Fig. 2.
The finite energy signal p z t( , ) is received at the receiver in the pre-
sence of zero-mean Gaussian noise n t( ). The noise is assumed to be
stationary and ergodic and to have a double-sided power spectral
density of S̃ ( )nn . Furthermore, n t( ) is assumed to be statistically in-
dependent of both the transmitted input waveform I t( ) and absorber
impulse response g z t( , ). Generally, the system impulse response g z t( , )
is not known a priori and the goal of the measurement process is to find
it from the PA signal. The output of the receiver-filter is given by

= +y z t y z t y t( , ) ( , ) ( )s n (8)

where y z t( , )s is the pressure signal component and y t( )n is the noise
signal component of the receiver output. These two components are
given by
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When a waveform y z t( , ) is received, it may contain only noise or a
pressure signal (resulting from the presence of a photoacoustic

absorber) plus noise. For SNR optimization, given a chosen waveform/
receiver filter pair, the instantaneous SNR at time t0 for a measurement
made at position z is defined as
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where E y t| ( )|n 0 refers to the noise expectation value.
The waveform design variables are then the waveform/receiver-

filter pair I t r t( ( ), ( )) aimed to simultaneously achieve the desired SNR
and resolution goals of the PA system.

Resolution is often introduced as the ability of a system to resolve
point-like absorbers which are close together, and is sometimes defined
in relation to the temporal width of the input pulse or the cut off fre-
quency of the system. In order to quantify the PA system’s ability to
resolve an extended absorber profile, the definition of resolution
adopted in this paper will be taken as the error between the ideal im-
pulse response and the obtained PA (after receiver-filter) system re-
sponse. Further details are given in section 5.

A point-like target absorber located at z0 is modeled as a Dirac-delta
function in space, =A z z z( ) ( )0 . Its temporal response is referred to
as the Point-Spread Function (PSF), so that Eq. (7) gives
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Eq. (12) implies that the (temporal) shape of the input pulse I t( ) is
completely unchanged by a spatial point source – the resulting PSF
pressure is a time-delayed version of I t( ). The full width at half max-
imum of the PSF is related to the ability of the PA system to resolve
point-like absorbers which are close together.

3.1. SNR improvement via matched filtering

Given the photoacoustic measurement channel as shown in Fig. 2,
an absorber impulse response g z t( , ), and white noise n t( ) with power
density N 2o , the maximum possible value of the SNR at time t0 can be
achieved by matched-filtering and is given by

SNR
N

E2
P

0 (13)

where EP is the energy of the received pressure signal
=p z G z I˜ ( , ) ˜ ( , ) ˜ ( ). The receiver-filter transfer function R̃ ( ) such

that the SNR is maximized is given by

=R G z I e˜ ( ) ˜* ( , ) ˜* ( ) i t0 (14)

where is a system related constant and starred superscripts denote
complex conjugation. The proof of expressions (13) and (14) can be
shown via an application of the Cauchy−Schwartz inequality and is
demonstrated elsewhere [23]. However, Eq. (14) is not necessarily
implementable for a typical PA system sinceG z˜ ( , ), determined by the
absorber profile, Eq.(5), is not known a priori.

Under the assumption of thermal and elastic confinement implied
by Eq. (1), to achieve maximum SNR, it is necessary to maximize the
energy of the pressure response. Faced with an unknown G z˜ ( , ), an
often-chosen alternative approach is to maximize the energy in the
input waveform, Ĩ ( ). Increasing the peak power in Ĩ ( ) (with finite
duration) leads to improvement in SNR, although the available or al-
lowable peak power eventually puts a limit to this approach. Another
way to increase signal energy is to increase the duration of the input
signal, I t( ). However, increasing the duration of the signal leads to a
loss of resolution [27]. This can be understood from the idea that to
achieve good resolution, two closely placed source points must be se-
parated, i.e. seen as two closely spaced points in the PA response, rather
than one large object. The SNR/resolution dilemma is associated withFig. 2. Photoacoustic measurement channel.

Z. Sun, et al. Photoacoustics 14 (2019) 49–66

51



the Rayleigh criterion which requires large optical energy for high SNR.
This implies a long pulse in a CW laser system, thus decreasing the
resolving power of the PA signal as per that criterion [27].

One approach often taken to address these conflicting requirements
is to design the receiver-filter as a matched filter to the input (transmit)
waveform [18–20], sometimes referred to as correlation processing
because the output pressure is now cross-correlated with the input
pulse. In this view, “matched filtering” means correlation with the input
signal - the “matching” of the filter is made with the input signal rather
than the output pressure signal (which is optimal). In the case of cor-
relation processing, the receiver-filter is implemented as

=R I e˜ ( ) ˜* ( ) i t0 (15)

Under the condition of Eq.(15), Eq.(9) for the PA signal becomes
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Eq. (16) can be interpreted in input/output form as a pressure re-
sponse to an ‘input’ pulse Ĩ ( )SD where =I I˜ ( ) |˜ ( )|SD 2 is the spectral
energy density of I t( ). This perspective allows for a simple way of
physically interpreting and analyzing the output of the receiver-filter as
being the PA response signal to a synthesized ‘effective’ pulse Ĩ ( )SD .

In this view of matched filtering, the PSF is now controlled by
=I I˜ ( ) |˜ ( )|SD 2. Then, the SNR is given by

=SNR
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If G z˜ ( , ) is bandlimited so that the bulk of its energy is con-
centrated in the frequency band + W[ , ]0 0 , it is clear from ex-
amining the numerator of Eq. (17), that to maximize SNR, I t( ) needs to
be designed so that its power spectral density Ĩ ( )SD is concentrated in
that same frequency band.

3.2. Special case: Pulse compression and chirp waveform optimization

The ability of the system to distinguish closely spaced point absor-
bers is controlled by the width of the point spread function, which is
essentially the width of the input pulse. However, the SNR is controlled
by the energy in the input pulse. Pulse compression provides a potential
solution to the resolution/SNR dilemma. The linear chirp is one such
waveform that can be compressed and is given by
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where T is the duration of the chirp. During the T second interval of the
pulse, the instantaneous frequency changes linearly from f( /2)0 to

+f( /2)0 . f0 is referred to as the center frequency of the chirp. The
bandwidth (chirp sweep) is the difference between highest and lowest
frequency in the frequency range. The chirp sweep rate is the rate of
change of frequency, which for a linear chirp is a constant given by

T . The chirp is determined by specifying the center frequency, f0,
duration T and (bandwidth) sweep, . Any two of sweep, sweep rate
and duration can be specified but in this paper we adopt the convention
that sweep and duration are the controlling parameters. The spectral
density I|˜ ( )|2 of the chirp can be roughly approximated as a rectan-
gular function and is given by [28]

+I f
T f f f|˜ ( )| 4 2 2

0 otherwise
T

2 0 0
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It is known from [29] that 98–99% of the chirp’s energy is confined

to the frequency range given in Eq. (19) for time-bandwidth T( ) pro-
ducts that are larger than about 100. Almost 95% of the spectral energy
is confined to the same frequency interval for time-bandwidth products
as small as 10.

The total energy of chirp can be calculated from

= = =E I f df T d T|˜ ( )| 1
2 4 4I T

2

(20)

Eq. (20) implies that chirp duration is the only parameter that af-
fects total energy delivered. However, a larger bandwidth implies a
smaller spectral energy density. The corresponding time domain func-
tion to I|˜ ( )|2 can be calculated via auto-correlation. For the chirp given
in Eq. (18), the autocorrelation has been shown to be well approxi-
mated by a sinc function with a main lobe of width 2/ [29], which can
be taken as its effective duration. The compression ratio is defined as
the ratio of the duration of the chirp (T) to its ‘effective’ (after auto
correlation) duration 2/ , and is given by T /2. Thus, the time-band-
width product (or sometimes referred as “dispersion factor”) (T ) of the
chirp determines the pulse compression ratio, which is the ratio of
duration of original pulse (energy of the pulse) to the effective duration
of the pulse (indirectly a measure of the potential resolution of the
pulse). By properly choosing the chirp bandwidth, the effective pulse
duration of the chirp can be controlled to a small value. Hence, the
equivalent input pulse I t( )SD is compressed. In intuitive terms, the time-
bandwidth product is thus a measure of the chirp’s ability to resolve the
SNR/resolution dilemma since it measures the system’s ability to reduce
pulse width. In principle the SNR and resolution of the PA signal can be
both improved by using a matched-filter with a chirp waveform.

With an unknown G z˜ ( , ), the matched-filter receiver transfer
function is chosen to match the input waveform and the SNR with this
matched-filter is given by Eq. (17). If linear frequency modulated chirp
is chosen as the input waveform, then I|˜ ( ) |2 can be roughly approxi-
mated by Eq. (19). Hence, it follows that the SNR for a linear frequency
modulated chirp is approximately given by
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where +0 and 0 are the chirp sweep upper and lower cutoff
frequencies in rad/s. Substituting Eq. (5), the 1D statement of the
Fourier shell theorem, without the time delay factor (propagating
wave), it follows that
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Eq. (22) clearly shows that (i) SNR is directly proportional to the
chirp duration, as would be expected, because increasing chirp duration
means increasing the total energy delivered; (ii) SNR is inversely pro-
portional to the square of the chirp sweep, because increasing chirp
sweep means distributing the total energy over a wider bandwidth; and
(iii) SNR is directly proportional to the absorber spectrum that lies
within the frequency interval bounded by the chirp sweep range

+ = +( )f 20 2 0 and =( )f 20 2 0 , because putting
chirp energy in frequency ranges where the absorber spectrum does not
have any frequency content implies wasting the chirp energy in a fre-
quency zone where the absorber cannot respond. Specific examples of
absorbers are considered to enable a deeper physical comprehension of
Eq. (22) in the following section.
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4. Absorber spectral analysis of SNR

From Eq. (22), the effective spatial frequency spectrum of the ab-
sorber is a key part in determining the SNR. For example, for a square
absorber that has a shape given by = ( )A z rect( ) z

l , where l is the
thickness of the absorber, the spatial Fourier transform evaluated at the
wave number A kˆ ( ) is given by a sinc function which has a width of c l2 /
(Hz) with most of its energy concentrated in the main lobe. Hence, the
absorber can be roughly approximated as a bandlimited absorber with
bandwidth = c l2 /a (Hz) that would capture most of the energy (>
90%) in the main lobe of the sinc. A true bandlimited absorber is a
square function in the spatial frequency domain. Although this kind of
absorber does not exist in reality, it is helpful for analyzing the im-
plications of bandlimitedness of the absorber on the SNR trend. For a
quick analysis of implications on SNR, it is insightful to consider an
absorber that can be considered as approximately bandlimited with a
bandwidth a corresponding to a reasonable concentration of spectral
energy (for example the main lobe in a sinc function).

According to Eq. (22), SNR is determined by the absorber frequency
spectrum that lies within the frequency interval bounded by the chirp
sweep range +f0 2 and f0 2 . Since integration implies the area
under the curve, Eq. (22) can be rewritten as

= × ×SNR T C OverlappingArea( )2
2

(23)

where =C p
N c16 s
0
2

0 2 is a constant factor and “overlapping area” denotes
the absorber frequency spectrum that lies within the frequency interval
bounded by the chirp sweep range.

For a bandlimited absorber, three different cases will be considered,
= a, < a, and > a. Fig. 3 demonstrates the effect of changing

the center frequency of the chirp on the overlapping area (and hence
SNR). The black square denotes the absorber frequency spectrum ap-
proximated as a bandlimited absorber, the red square denotes the chirp
spectrum also approximated as a square in frequency, and the over-
lapping area in Eq. (23) is shown by the shaded area. The top row in
Fig. 3 shows the no overlapping conditions which implies that the SNR
is 0. The middle row in Fig. 3 shows the condition with partial over-
lapping, and the bottom row in Fig. 3 shows the ideal condition where
the chirp spectrum lies either completely inside the absorber frequency
spectrum or the absorber frequency spectrum lies completely inside the
chirp spectrum.

It is obvious from Eq. (23) and Fig. 3 that as the chirp center fre-
quency moves from the left of the absorber to the right of the absorber,
the SNR will increase in the beginning until a maximum value is at-
tained and then decrease until there is no overlapping area. The only
difference between the three cases is the actual value of the maximum
SNR. When a, the maximum SNR will be

= × = ×SNR T C df T C1MAX 2

2

2
2

(24)

When > a, the maximum SNR will be

= × = × ×SNR T C df T C1MAX
a

2

2

2
2

2

2
a

a

(25)

It is noted that since > a, the maximum SNR in Eq. (25), will be
less than the value achieved in Eq. (24). A square absorber (square in
space, sinc in frequency) can be considered to be approximately

Fig. 3. Overlapping conditions for bandlimited absorber for the cases where the chirp bandwidth a) equals, b) is smaller than, or c) is greater than, the absorber
bandwidth.
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bandlimited. Therefore, its SNR trend should be similar to that of a
bandlimited absorber. However, the overlapping area is slightly dif-
ferent from the bandlimited absorber.

In Fig. 3 a), the energy delivered by the chirp is constant from top to
bottom, however the maximum SNR only occurs when the chirp com-
pletely overlaps the absorber spectrum, which means the incident en-
ergy is placed in the right frequency range. However, when the chirp
frequency spectrum already covers most of the absorber frequency
spectrum, increasing effectively reduces the spectral energy density.
From Fig. 3, it can be seen that increasing does not increase the
overlapping area, and due to the 2 in the denominator of Eq.(23), the
SNR will start to decrease. More specifically, if comparing the bottom
row in Fig. 3 a) and c), since the absorber frequency spectrum already
completely overlaps the chirp spectrum as in Fig. 3 a), increasing the
chirp bandwidth as in Fig. 3 c) will cause the SNR to decrease because
chirp energy is wasted. In summary, to achieve optimal SNR, the key
parameters of the chirp ( f0 and ) need to be controlled to place the
chirp frequency spectrum (from =( )f 20 2 0 to

+ = +( )f 20 2 0 ) in the optimal frequency range where it can
cover most of the absorber frequency spectrum.

5. Absorber profile and resolution

To quantify the quality of the cross-correlated signal at the output of
the receiver-filter y t( )s , an implementation of the concept of resolution
is introduced. Since the goal of the pulse compression radar approach is
to mimic a short effective pulse, for the purpose of the analysis herein
we take as a measure of resolution the error between the signals ob-
tained, y t( )s at the output of the receiver filter, and the ideal response
y t( )ideal , which is taken to be the impulse response to the system. The
purpose of this definition of resolution is to examine the imaging ability
of the PA system, rather than solely its ability to distinguish between
closely spaced absorbers which is what would be implied if only the
effective pulse width were taken as a measure of resolution. It will be
shown in the analysis that follows that these two approaches to mea-
suring resolution are not the same. In this paper, the photoacoustic
system is simplified to the one-dimensional model of Fig. 1.

It is assumed that the media are acoustically homogeneous. The
mathematical model for the absorbing medium can be expressed as a
‘square’ absorber. If light decay inside the absorber is taken as ex-
ponential (Beer-Lambert law), and assuming no scattering inside the
absorber, then the absorber can be modeled as

=A z rect z
l

e( ) az
(26)

where a is the optical attenuation coefficient.
In order to calculate the error between y t( )ideal and y t( )s after the

receiver-filter, N points with uniform spacing are chosen between the
two zero crossings of the impulse response curve. The error (maximum
and average error) between the compressed pulse response and the
ideal impulse response is used as a measure of the resolution of the
pulse-compressed PAR system. The equation for calculating the max-
imum error is given by

= =Err
y t y t

y t
i N| max

( ) ( )
( )

1..s i ideal i

ideal i
max

(27)

where N is the number of sampling points. The equation for calculating
the average error is given by

=
=

Err
N

y t y t
y t

| 1 ( ) ( )
( )average

i

N
s i ideal i

ideal i1 (28)

Eq.s (27) and (28) are used to calculate the errors (resolution) using
simulations shown in the next section.

5.1. Cross-correlation signal of various absorber profiles

Prior to calculating the errors between the pulse-compressed result
and the ideal impulse response, it is necessary to derive the closed form
expression for the signal obtained after the receiver-filter, for the two
signals corresponding to the aforementioned square and exponential
decay absorbers. For a square absorber, the cross-correlated photo-
acoustic signal after the receiver-filter y z t( , )s is most easily expressed
as

=
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+ +

+
y z t

p
R d z

R d z

( , )
2

_ ( ) 0

_ ( ) 0

s

t z
c

l
c

t z
c

l
c

II
approx

t z
c

l
c

t z
c

l
c

II
approx

0 2

2

cos

2

2

cos

s s

s s

s s

s s

(29)

Here, R t_ ( )II
approx

cos is the (approximate) inverse Fourier transform of I|˜ ( )|2
where Ĩ ( ) is the Fourier transform of I t( )T given in Eq.(18) and has
been shown to be well approximated by [29]

=R t T t
t

f t T t T_ ( )
sin ( | |)

| |
cos (2 )

0 otherwise
II
approx

cos
0

(30)

The space variable z in Eq. (29) only depends on the measurement
location (where the transducer is placed). Supposing that the mea-
surement point is placed at <z l

2 and is fixed, the signal y z t( , )s
would be a function of t only, that is y t( )s . The expression given by Eq.
(29) for <z 0 can be computed in closed form by the symbolic com-
puter algebra system Maple (Maplesoft 2017). For the calculation in
closed form, two different conditions are considered <l

c
T
2s
and >l

c
T
2s
.

The expression for y t( )s for <l
c

T
2s
is shown in Appendix A and for >l

c
T
2s

in Appendix B.
Similar to the approach used for the square wave absorber, the

cross-correlated signal after the receiver-filter y z t( , )s can be computed
for the exponential decay absorber described by Eq. (26) and is given by
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To obtain a closed-form analytic expression of Eq. (31) for <z 0 via
the symbolic computer algebra system Maple, in the exponential decay
absorber case we need to separately consider the possibility of =f0 2 ,
as there is then a pole in the expression. Hence, another expression for
the exponential decay absorber photoacoustic signal is required in the
special case of =f0 2 . The expressions for y z t( , )s for the condition

<l
c

T
2s
are given in Appendix C ( f0 2 ) and Appendix D ( =f0 2 ). Si-

milarly, for >l
c

T
2s
, the response is given in Appendix E ( f0 2 ) and

Appendix F ( =f0 2 ).

5.2. Simulation results

In this section, several important parameters of the incident chirp
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will be investigated. This will provide a guide on how to choose the
proper parameters of the chirp for the goal of obtaining a pressure re-
sponse that will resemble the impulse response, or in other words,
optimal resolution as defined in this paper. Furthermore, the SNR
trends with different chirp parameters are also verified.

Since the assumed expressions permit closed form results, the re-
solution of the system was measured as the error between the actual PA
radar result and the desired impulse response (pulse PA response). The
square and exponential decay absorbers are modeled with the para-
meter =l m0.005( ). The transducer is assumed at position

=z m0.03( ). The exponential decay absorber is assumed with an
absorption coefficient =a m200( )1 . The speed of sound in the scat-
tering material and the absorber are assumed to be the same, and the
value is taken as the speed of sound in water =c m s1500( / )s . Fig. 4
shows the frequency spectrum of a square absorber with =l m0.005( )
and =c m s1500( / )s , which is the blue line. Most of the absorber energy
is concentrated inside the frequency interval shown by the red line
(Fig. 4). The absorber used in the simulations has most of its energy
concentrated under 1MHz, so the chirp parameters are chosen ac-
cording to this order of magnitude. The initial pressure p0, which
merely serves as a scaling factor for simulations of the response, is
chosen in Arbitrary Units (A.U.) as =p A U10 ( . . )0

10 .

5.2.1. Effect of chirp duration t
As discussed earlier, the actual chirp duration is T and the com-

pressed pulse duration is 2 , which is referred to as the effective pulse
duration. First, 4 sets of chirp parameters were tested with the chirp
duration T chosen as × s1 10 2 , × s1 10 3 , × s1 10 4 and × s1 10 5 . The
other chirp parameters were held made constant at

= =MHz f MHz5.999 , 30 .
Since the chirp bandwidth remains unchanged, the effective pulse

duration 2 does not change, so it would be expected that there should
not be any difference in resolution between the simulation results using
these parameters, despite the changing duration of the chirp. However,
the SNR is proportional to the chirp duration, T, so it would be expected
that the SNR should decrease from parameter set 1–4 as T decreases
because the total energy delivered decreases. Indeed, the simulation
results for the PA signal after the receiver-filter showed no difference
except for the amplitude between the 4 sets of parameters, as shown in
Fig. 5. The overlapping area (the area filled with yellow in the second
column of Fig. 5) of the frequency spectrum of the absorber and the
chirp frequency spectrum plays the most important role in resolution.
The absorber spectrum and chirp spectrum are both normalized to have

unit amplitude. Since the chirp bandwidth and center frequency are
constant through all 4 sets of parameters, implying that the overlapping
area is constant (99.2% of the absorber energy lying inside the chirp
spectrum), there is no doubt that the resolution error is also constant.
The maximum error and average error were calculated using Eq. (27)
and (28) with =N 331 points, respectively, and have the same value for
all 4 sets of parameters. The average errors were found to be more
representative of the difference between PA signal and ideal impulse
response since one sample point can lead to relatively large maximum
errors despite the overall response generally being otherwise close to
the impulse response. However, the maximum errors can reveal im-
portant problems in the PA signals so they were also calculated. The
SNR was calculated through Eq. (22) and showed a linear relation with
chirp duration T, as expected. The same SNR and resolution calculation
approaches were used for all the simulations in this paper.

For the second set of simulations, 4 sets of parameters were tested
with a constant time-bandwidth product, with constant center fre-
quency =f MHz30 . In this case, as T increased, decreased, but the
time-bandwidth product (compression ratio) was held constant. Since
the effective pulse duration (given by 2/ ) was increased, this gave a PA
signal that blurs the shape of the absorber, i.e. a worse resolution. The
parameter sets are shown in Table 1. The simulation results are shown
in Fig. 6 for both the square and exponential decay absorbers.

As can be seen from Fig. 6, the pressure response blurs the shape of
the absorber when the bandwidth decreases because the effective
pulse duration 2 becomes large and can no longer be considered ‘short
enough’ to represent a short pulse. The SNR of the PA signal also de-
creases with decreasing because the chirp cannot overlap the energy
concentration region of the absorber. As shown in Fig. 6, as the over-
lapping energy percentage becomes smaller, both the resolution and
SNR decrease. Although the chirp duration T increased, which means
more total energy delivered, the chirp cannot “catch” information
about the absorber when it is sweeping the wrong range in the fre-
quency domain, hence the resolution decreased. The correlation process
in the receiver-filter also correlates the noise with the chirp waveform,
so larger chirp energy also increases the noise level. Since the smaller
bandwidth chirp only carries a small portion of useful signal energy, the
SNR will decrease. The energy overlapping percentage is calculated for
the square absorber and is also shown in Fig. 6. The exponential decay
absorbers may have slightly different numbers, but the trend will be the
same. For the square and exponential decay absorber, their frequency
spectra are both centered at 0 Hz, but the chirp sweeps in the positive
frequency region only. This follows because a negative frequency can

Fig. 4. Absorber frequency spectrum.
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be considered a phase change of the same positive frequency, hence
covering the positive frequencies in the spectrum of an absorber is
sufficient.

5.2.2. Effect of chirp bandwidth
In this subsection, the effects of the chirp frequency parameters on

the PA signal are examined. The bandwidth Δ is the only parameter
modified and is selected to be 3.8, 5.6, 5.9, 5.999 and 500 MHz, while
the chirp duration and center frequency are kept constant at

= × =T s f MHz1 10 , 33
0 . The total energy of the chirp is constant

with constant duration but the mean and peak power decrease with
increased bandwidth. The simulation results are shown in Fig. 7 along

with their associated normalized frequency overlapping conditions.
From Fig. 7, it can be observed that when Δ is large enough (or

equivalently when the effective pulse duration is small enough), such as
in the 4th parameter set corresponding to MHz5.999 , the PA signal re-
sembles the absorber shape well. Hence, larger bandwidths are desir-
able in order to obtain narrower effective pulses and hence better re-
solutions. The large bandwidth of the pulsed laser approach gives good
resolution because it is so wide (theoretically infinite) that it is guar-
anteed to “catch” information about the absorber everywhere as shown
in the 5th parameter set. However, many of those frequencies are likely
wasted if (i) the absorber has no information to ‘provide’ in that fre-
quency area (ii) if the transducer transfer function is not useful at some
frequencies due to the inability of the transducer to respond. In the
frequency domain, waveform engineering can tailor the frequency
spectrum of the stimulus within the optimum response of the receiver
transducers [20], as well as the optimum response of the absorber. We
note that increasing the bandwidth Δ also results in a better SNR in the
first 4 sets of simulation because the absorber frequency spectrum is
centered at 0 Hz and the chirp center frequency is placed far from it.
Hence, for this particular case, increasing Δ will cause the chirp (which
is centered at =f MHz30 in the simulations) to cover more of the

Fig. 5. Effect of Chirp Duration on PA signal. The duration T is selected to be 10, 1, 0.1 and 0.01ms (top to bottom), while the chirp bandwidth and center frequency
are kept constant at = =MHz f MHz5.999 , 30 . In column 2, the red line is the absorber spectrum, the blue line is the chirp spectrum (approximated as a square
sweep for clarity) and the yellow denotes the overlap in the two spectra.

Table 1
Parameter Table with effective pulse duration changing.

Parameter sets No. Chirp duration T (s) Bandwidth Δ (MHz)

1 1× 10−5 5.999
2 1.034×10−5 5.8
3 1.071× 10−5 5.6
4 1.579× 10−5 3.8
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absorber frequency spectrum and hence a better SNR is obtained.
However, when the chirp bandwidth is extremely large as shown by the
5th parameter set, SNR will decrease because the chirp energy is wasted
in the frequency range where the absorber does not have frequency
content. Also, noise will increase as the wider spectral bandwidth of the
incident pulse will contain more noise components.

5.2.3. Effect of chirp center frequency
The other important parameter which affects the PA signal is the

choice of chirp center frequency f0. To analyze the effect of center
frequency, the chirp duration and bandwidth were kept constant at

= ×T s1 10 3 , = MHz3 while only the chirp center frequency was set
at 1.501, 1.55, 1.64, 1.8 and MHz2.5 . Hence, the effective pulse dura-
tion (given by 2 ) and time-bandwidth product (compression ratio) re-
mained fixed. Hence, according to a traditional definition of resolution
(the width of incident pulse [30]), we should expect to get similar re-
sults for these different parameters.

In Fig. 8, from parameter sets 1–5, the chirp swept the same
bandwidth (3MHz) but in a different frequency range (moving away
from the absorber center frequency). It is important to note that even if

the chirp bandwidth (and thus the effective pulse duration which was
0.67ms in this case) was the same in all the test cases, the results in
Fig. 8 clearly show a large variability in resolution in the sense of the
detailed evolution of the impulse response, with average errors chan-
ging from 6% in the best case to 94% in the worst case.

This addresses the comment made above about the lack of a stan-
dard definition of resolution. With a 3-MHz sweep and µs0.67 effective
pulse width, from the resulting PA responses in Fig. 8, it is clear that the
obtained responses vary from the expected impulse response to cap-
turing only the edges of the absorber profile. Thus, the resolution
(imaging ability) is clearly not the same in all the cases. As a result, it is
suggested that an optimal resolution definition should involve the error
to the desired impulse response/imaging ability of the system as shown
in Eqs.(27) and (28). In particular, the average error, Eq.(28), between
the desired impulse response and the obtained system response to a
square absorber, emerges as a comprehensive measure of resolution.
The square absorber in space is a good benchmark/reference absorber
since the flat top of the absorber will test the system’s ability to resolve
lower frequency (broad) details while the sharp corners of the square
will test the system’s ability to resolve higher frequency details.

Fig. 6. Effect of overlapping energy on absorber reconstruction error and SNR when the time-bandwidth product is kept constant. Center frequency is 3MHz,
parameters top to bottom are: T= 1×10−5swith Δ=5.999MHz; T=1.034× 10−5s with Δ=5.8MHz; T= 1.071× 10−5s with Δ=5.6MHz,
T= 1.579× 10−5s with Δ=3.8MHz. In column 2, the red line is the absorber spectrum, the blue line is the chirp spectrum (approximated as a square sweep for
clarity) and the yellow denotes the overlap in the two spectra.
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6. Summary and conclusions

In summary, this paper developed and analyzed a 1D theory of the
PA radar, using frequency chirp modulation leading to pulse compres-
sion and input-pulse match filtering. Chirps make suitable waveform
sources to achieve the goals of simultaneously improving SNR and
optimal resolution with a moderate power and controllable frequency
spectrum laser source, thus addressing some of the difficulties asso-
ciated with pulsed lasers such as large bandwidth requirements and
incident energy levels limited by safety standards. Closed form ex-
pressions for the compressed pulse and response to the compressed
pulse were derived, which enabled a detailed analysis of the effects of

the chirp parameters on both SNR and resolution. For the purpose of the
analysis in this paper, resolution was defined as the error between the
PA signal after the receiver-filter and an “ideal” pulse impulse response.
The three key parameters to control the chirp are the duration T, center
frequency f0 and bandwidth . Based on the analysis in this paper,
several conclusions were reached: SNR is directly proportional to the
duration of the chirp, inversely proportional to the square of the chirp
sweep and directly proportional to the square of the ‘frequency overlap’
(or equivalently, energy coverage) of absorber and chirp. Increasing
chirp sweep (bandwidth) increases SNR only as long as doing so implies
increasing the ‘frequency overlap’ of the chirp and absorber. Once
maximum frequency overlap has been achieved by the chirp sweep,

Fig. 7. Effect of Bandwidth on PA signal. The bandwidth Δ is selected to be 3.8, 5.6, 5.9 5.999 and 500MHz (top to bottom), while the chirp duration and center
frequency are kept constant at = × =T s f MHz1 10 , 33

0 for the first 4 sets of parameters. The center frequency of the 5th set of parameter is chosen to be
250.001MHz to keep the frequency sweep range positive. In column 2, the red line is the absorber spectrum, the blue line is the chirp spectrum (approximated as a
square sweep for clarity) and the yellow denotes the overlap in the two spectra.
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increasing the sweep further only serves to reduce the SNR. Traditional
measures of resolution in terms of duration or bandwidth of the input
signal were found to not correlate with the imaging ability of the PA
radar system. It was found that the average error between the ideal
pulse impulse response and the obtained PAR system response to a
square absorber can be used as a measure of spatial resolution.

When using correlation processing, the duration of the chirp has no
effect on the resolution. The ‘effective duration’ of the post-correlation
processed chirp is inversely proportional to the chirp sweep and is given
by 2/ . However, an effective short duration of the chirp is insufficient
to ensure a good resolution. The more of the frequency spectrum of the
absorber the chirp frequency spectrum can cover, then better PA spatial
resolution will ensue. The center frequency of the chirp determines the

sweeping frequencies. When the chirp bandwidth is fixed, putting the
center frequency at or close to the absorber bandwidth center frequency
will give the best SNR, as this will maximize the overlapping area of
spectral energy densities of absorber and chirp, as well as optimal re-
solution. The chirp center frequency f( )0 and bandwidth ( ) are the two
parameters that most affect both SNR and resolution. Their proper se-
lection can result in both good SNR and good absorber profile resolu-
tion. Optimal choices of both parameters are dependent on the spatial
frequency spectrum of the absorber. However, in a realistic scenario (in
vivo imaging), the absorber profile is always unknown. Difficulty in
matching the chirp spectrum with absorber spectrum still exists. Future
research on statistically determining the absorber profile for different
kinds of carcinoma may help to address this problem.

Fig. 8. Effect of chirp center frequency on PA signal. Chirp duration and bandwidth are constant at = ×T s1 10 3 , = MHz3 chirp center frequency is changed from
1.501, 1.55, 1.64, 1.8 and MHz2.5 (top to bottom). In column 2, the red line is the absorber spectrum, the blue line is the chirp spectrum (approximated as a square
sweep for clarity) and the yellow denotes the overlap in the two spectra.
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Appendix A

The cross-correlated photoacoustic signal after the receiver-filter for square absorber under the condition <l
c

T
2s
is given by
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The y t( )s
i in Eq. (32) are given by the following expressions.
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where Si x( ) is the Sine Integral given by

=Si x t
t

dt( ) sin ( )x

0 (38)
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Appendix B

The cross-correlated photoacoustic signal after the receiver-filter for square absorber under the condition >l
c

T
2s
is given by
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The y t( )s
i in Eq. (39) are given by the following expressions:
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Appendix C

The cross-correlated photoacoustic signal after the receiver-filter for exponential decay absorber under the condition <l
c

T
2s
and f0 2 is given

by
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The y t( )s
i in Eq. (45) are given by the following expressions:
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where =Ei f t e k dk(1, ( )) kf t

1

( ) 1 is the Exponential Integral.

Appendix D

The cross-correlated photoacoustic signal after the receiver-filter for exponential decay absorber under the condition <l
c

T
2s
and =f0 2 are still

given by Eq. (45), where the y t( )s
i are given by the following expressions:
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Appendix E

The cross-correlated photoacoustic signal after the receiver-filter for exponential decay absorber under the condition >l
c

T
2s
and f0 2 is given

by
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The y t( )s
i in Eq. (56) are given by the following expressions.
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Appendix F

The cross-correlated photoacoustic signal after the receiver-filter for exponential decay absorber under the condition >l
c

T
2s
and =f0 2 is still

given by Eq. (56) where the y t( )s
i are given by the following expressions.
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