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Abstract The evaluation of the stress–strain state of metallic materials is an important
problem in the field of non-destructive testing (NDT). Prolonged cyclic loading or
overloading will lead to permanent changes of material strength in an inconspicuous
manner that poses threat to the safety of structures, components and products. This
research focuses on gauging the mechanical strength of metallic alloys through the
application of frequency-domain laser ultrasound (FDLU) based on a continuous-
wave diode laser source. The goal is to develop industrial NDT procedures for fatigue
monitoring in metallic substrates and coatings so that the technique can be used for
mechanical strength assessment. A small-scale, non-commercial rig was fabricated
to hold the sample and conduct tensile FDLU testing in parallel with an adhesive
strain gauge affixed on the tested sample for independent measurement of the applied
stress. Harmonic modulation and lock-in detection were used to investigate the LU
signal sensitivity to the stress–strain state of ordinary aluminum alloy samples. A 1
MHz focused piezoelectric transducer was used to detect the LU signal. During the
tensile procedure, both amplitude and phase signals exhibited good repeatability and
sensitivity to the increasing stress–strain within the elastic regime. Signals beyond the
elastic limit also revealed significant change patterns.
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1 Introduction

Material integrity evaluation is of central importance in non-destructive testing (NDT).
In elastic materials, e.g., metal alloys, there will be permanent changes when an elastic
material is overloaded or loaded cyclically for a long time which will eventually result
in generation of fatigue cracks. To prevent the material from failing, it is essential to
diagnose or even quantify its stress–strain state which can be generally categorized into
two regimes. In the elastic regime, stress varies with strain in a linear and reversible
pattern so that elastic solids can restore their original shape after load removal. In this
case, the material remains intact and robust. In tensile testing particularly, when the
external load exceeds the material’s elastic limit, plastic deformation occurs and the
material can no longer maintain its original elastic properties. In this case, materials
can be regarded as fatigue hazards and thus require replacement.

In order to implement such diagnosis in-situ, remotely and non-destructively, we
explore the application of frequency-domain laser ultrasound (FDLU). As a novel
and totally non-contact NDT approach, based on amplitude adjustable fiber-coupled
diode laser source irradiation and an inexpensive ultrasonic transducer, FDLU can be
implemented without high-performance bulky pulsed laser system instrumentation and
exhibits more flexibility than conventional pulsed laser ultrasound methods. Therefore,
it has excellent potential for portable industrial use. Some applications on materials
diagnosis [1–3] and imaging [4] have been reported with promising results for fur-
ther field testing. The present research developed a full theory for the semi-infinite
aluminum FDLU pressure signal which was subsequently validated experimentally
through monitoring the stress–strain state of aluminum 6061 used in the aerospace
industry with a water-coupled transducer.

2 Experimental Setup and Methodology

2.1 FDLU Instrumentation

Frequency-domain laser ultrasonic and photothermal signals have been studied the-
oretically and experimentally in the past [1–5]. However, applications of the theory
have been limited because it only considers the acoustic radiation directivity with
direct contact detection approach. In this work, the FDLU frequency dependence is
studied in a non-contact configuration using an aluminum sample (schematic shown
in Fig. 1a) with water as the coupling medium. The laser and the water-coupled trans-
ducer were aligned at the same location of sample surface. A high-frequency lock-in
amplifier captured the harmonic electric signal from the transducer converted from the
acoustic pressure and outputted demodulated amplitude and phase signals. The func-
tion generator and lock-in amplifier were synchronized and controlled by a computer
with data acquisition modules.
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2.2 Materials and Methods

According to thermoelastic theory, deformation will set in when an elastic body is
under an increasing tensile force. When the external tension becomes constant, the
deformation stops and the whole system reaches dynamic equilibrium. In this condi-
tion, elongation parallel to the direction of the external force is always accompanied by
vertical constriction. The elastic body becomes thinner and necked under tensile load.
In addition, the change of elastic moduli and wave velocity due to a high compression
or tension has been studied in the field of seismology [6–8]. These stress–strain-
dependent features suggest a possible change in the photoacoustic (laser ultrasonic)
signal which is directly related to the elasticity of the sample.

For our laser ultrasonic stress–strain evaluation, an in-house designed tensile rig
with a water-tight tank was assembled. The main part of the rig was made of hardened
stainless steel with sufficient tensile strength and corrosion resistance. The experimen-
tal configuration is shown in Fig. 1b. The sample was made of aluminum T6061 T-6
alloy which is commonly used in the aerospace industry. A piece of adhesive strain
gauge (KYOWA�, sensitivity: 10−6) was affixed on the back surface of the sample to
measure the actual strain. An 808 nm diode laser operated at 1 W laser power (RMS)
output and 1 MHz frequency with the focused immersion ultrasonic transducer of
nominal 1 MHz central frequency fixed at 48 mm above the sample. The 1 MHz mod-
ulation frequency was set to be high enough, resulting in a thermal diffusion length
of only a few microns and thus thermal-wave penetration effects were suppressed.
Furthermore, the large laser beam size (diameter ∼2 mm) adopted in the experiment
provided a heat source whose dimension was much larger than the magnitude of tensile
deformation. To check the reliability of the rig and the signal-to-noise ratio (SNR) of
the FDLU signal dependence of strain, the first tests were restricted within the elastic
regime. Some more tests were also conducted into the plastic regime based on our
reliable tensile rig.

3 Theory

A 3-D azimuthally symmetric thermoelastic model was developed with the following
assumptions:

a) The cross section and thickness of the sample are much larger than the wavelength
of any elastic wave modes (compressional wave has a wavelength of 6.7 mm at 1
MHz);

b) The front surface of the sample is stress-free, and the water column pressure above
the sample is neglected;

c) The laser beam intensity has a Gaussian spatial distribution.

In metals, light absorption takes place within a very shallow subsurface layer so
that a surface thermoelastic source assumption is a reasonable approximation [9].
The frequency-domain thermal-wave equation in cylindrical coordinates (see Fig. 2a)
under harmonic excitation is:

− k∇2T̃ (r, z, ω) + iωρCT̃ (r, z, ω) = I0(πr
2
0 )−1δ(z) exp

(
−r2/r2

0

)
. (1)
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T̃ is the harmonic temperature variation; k, ρ,C are the thermal conductivity, density,
and specific heat capacity of aluminum, respectively; ω is the angular modulation
frequency; and I0 is the laser intensity. Taking the Hankel transform of order zero of
T̃ with respect to coordinate r , the solution for the thermal-wave field in the Bessel–
Fourier (Hankel) domain (spatial frequency coordinate λ), denoted as T̂ , can be found:

T̂ (λ, z, ω) = I0(2απk)−1 exp
(
−r2

0 λ2/4 − αz
)

, (2)

where α2 = λ2 + iωρC/k. Inside the metal, the stress–strain relation follows the
generalized Hooke’s Law described in the form of scalar and vector displacement
potential components [10],

∇
[(

λ̂ + 2μ̂
)

∇2ϕ̃ + ρω2ϕ̃ − 3B̂β T̃
]

+ ∇ ×
(
μ̂∇2ψ̃ + ρω2ψ̃

)
= 0. (3)

λ̂, μ̂ are Lame’s first and second constants, respectively; B̂ = λ̂ + 2
3 μ̂ is the bulk

modulus; and β is the linear coefficient of expansion of aluminum. The term −3B̂β T̃
represents the thermal expansion due to light absorption. Note that the displacement
vector is given by ũ = ∇ϕ̃ +∇ × ψ̃, and when the surface is stress-free, Eq. 3 reduces
to the Helmholtz Eq. 4(a, b) with the following boundary conditions, Eq. 4(c, d) [10]

∂2ϕ̂H0/∂z2 − σ 2ϕ̂H0 =
(

3 − 4c2
s /c

2
l

)
β T̂ (λ, z); (4a)

∂2ψ̂H1/∂z2 − γ 2ψ̂H1 = 0; (4b)

τ̂ H0
zz = μ̂

[
ζ 2ϕ̂H0(λ, 0) + 2λ(∂ψ̂H1/∂z)z=0

+ (3c2
l /c

2
s − 4)β T̂ (λ, 0)

]
= 3Bβ T̂ (λ, 0); (4c)

τ̂ H1
zr = μ̂

[
−2λ(∂ϕ̂H0/∂z)z=0 − ζ 2ψ̂H1(λ, 0)

]
= 0; (4d)

where cl =
√

(λ̂ + 2μ̂)/ρ, cs = √
μ̂/ρ are the longitudinal and transverse wave

velocities, respectively. The other symbols are defined as: σ 2 = λ2 − ω2/c2
l , γ

2 =
λ2 −ω2/c2

s ,ζ 2 = 2λ2 −ω2/c2
s . The superscripts H0, H1 refer to the Hankel transform

of the Bessel function of the first kind of order zero and order one, respectively. Since
the model is azimuthally symmetric, consistent with a Gaussian laser beam, the vector
potential has only one azimuthal component (denoted as ψ). Solving Eqs. 4, we obtain
the displacement potentials in the Hankel domain:

ϕ̂H0(λ, z, ω) =
[

4λ2κγα − ζ 4κ

α(α2 − σ 2)(ζ 4 − 4λ2γ σ)
exp (−σ z)

+ κ

α(α2 − σ 2)
exp (−αz)

]
exp

(
−r2

0 λ2/4
)

; (5a)

ψ̂H1(λ, z, ω) = 2λκζ 2

α(α + σ)(ζ 4 − 4λ2γ σ)
exp

(
−r2

0 λ2/4 − γ z
)

; (5b)
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where κ = (
3 − 4c2

s /c
2
l

)
β I0(2πk)−1 is a constant related to the material properties

and the laser intensity. To obtain the displacement field in the spatial frequency domain,
it is necessary to take the inverse Hankel transforms of ϕ̂H0 and ψ̂H1 with respect to λ,

ϕ̃(r, z, ω) =
∫ +∞

0
λϕ̂H0 J0(λr)dλ; (6a)

ψ̃(r, z, ω) =
∫ +∞

0
λψ̂H1 J1(λr)dλ. (6b)

Next, we consider the Hankel transform of the ultrasonic pressure distribution in the
coupling medium, water. As the thermal diffusivity of water is small (on the order of
10−7 cm2 · s−1), its temperature variation is neglected, and thus, the coupling fluid can
be regarded as an isothermal medium. The pressure variation p̃ satisfies the normal
wave equation (viscous losses are neglected) [11],

∇2 p̃ + (ω/v0)
2 p̃ = ρ0ω

2δ(z)n · (∇ϕ̃ + ∇ × ψ̃). (7)

The Dirac delta function represents the appropriate velocity boundary condition at the
sample–water interface; n is the outward unit normal vector.

Case 1. Semi-infinite water layer
In this case, the ultrasonic pressure is a traveling wave without boundary reflections.

The pressure in water has a traveling waveform shape (along the negative z-direction),
i.e., p(λ, z, t) = A(λ) exp(ikzz+iωt). The solution of the pressure field in the Hankel
domain is

p̂(λ, z, ω) = ω2

α · �
ρ0(2λ2 − ζ 2)

κζ 2

(α + σ)(ζ 4 − 4λ2γ σ)
exp

(
�z − r2

0 λ2/4
)

, (8)

where �2 = λ2 − ω2/v2
0. This solution neglects the influence of the immersion

transducer.
Case 2. Effect of ultrasonic transducer location with respect to the sample
As the lateral dimension of the transducer (∼19 mm) is much larger than the laser

spot size (∼2 mm) and the wavelength of the pressure wave in water (∼1.5 mm)
at 1 MHz, the reflection of the pressure wave due to the transducer should be taken
into account, assuming the transducer is placed in the water at a distance Dw away
from the sample with its surface parallel to the sample surface. The influence of
the transducer can be described by a boundary condition introducing finite acoustic
impedance. Given that the focal length of the transducer is much longer than its radius,
its surface curvature is neglected: ρ−1

0 n · ∇ p̃ = −iωZ−1
T p̃ at z = −Dw. Here, ZT

is the acoustic impedance of the transducer active surface area. The Hankel transform
solution then becomes

p̂(λ, z, ω) = ρ0ω
2

α · �

[
κζ 2(2λ2 − ζ 2)

(α + σ)(ζ 4 − 4λ2γ σ)

] (
Z� − iρ0ω

Z� + iρ0ω
e2�Dw − 1

)−1

·
[
e−�z + Z� − iρ0ω

Z� + iρ0ω
e�(z+2Dw)

]
exp

(
−r2

0 λ2/4
)

.

(9)
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Finally, the real spatial pressure field can be obtained by applying a numerical inverse
Hankel transform to Eqs. 8 and 9.

4 Results and Discussion

4.1 Theoretical Analysis

Figure 2a shows the metal surface displacement distribution. As the source term
includes only scalar displacement potential, and shear motion is generated from mode
conversion at the metal surface, both direct generation and mode conversion con-
tribute to the surface normal and tangential displacements. The normal displacement
is largest at, and in the area adjacent to, the illumination center and this is the direct
result of thermal expansion owing to the laser power absorption. Since the water cou-
pling medium cannot support shear modes of motion, the acoustic pressure is only
related to the normal displacement of the metal surface; therefore, the highest acoustic
signal is captured above the laser beam incidence spot, i.e., θ = 90◦. The presence of
the transducer redistributes the pressure wave energy and broadens the acoustic beam.
The obvious differences can be seen upon comparison of the two wavefront fields in
Fig. 2b as the partial reflection distorts and reshapes the pressure fields.

The results are compared with theory from Eqs. 8 and 9. As shown in Fig. 2c,
the calculated result is more reliable and shows a pattern similarity to the experi-
mental signal when the pressure wave reflection of the transducer is considered. This
characteristic becomes very important when selecting the best location or modulation
frequency for the transducer and laser. The frequency response of the transducer also
needs to be corrected under the current FDLU configuration when modulated with
multi-frequency excitation waveforms. The computed results which include reflec-
tions were slightly shifted (approx. 0.6 %) with respect to the experimental response
which could be due to the following reasons: (1) discrepancy introduced by neglecting
the focused transducer surface curvature; (2) inaccurate transducer position between
calculation and experiment.

4.2 FDLU Tensile Test

The 1 MHz laser-induced signal was demodulated by a lock-in amplifier using a time
constant of 100 ms. The lock-in signals were captured and digitized 300 times within
1 min and subsequently averaged. The amplitude and phase components of the FDLU
signals and their standard deviations are depicted in Fig. 3a. Both amplitude and phase
exhibit good reproducibility and reversibility during the tests within the elastic regime.
The phase performance is better than the amplitude. With a standard deviation up to
only 0.5◦ despite a small hysteresis, the phase is consistently reversible within the
elastic regime. Both amplitude and phase show that the FDLU signal returns to the
initial level after the removal of the external load. Figure 3b depicts the full history
of the strain-dependent signal from unstressed state to fracture. As the commercial
adhesive strain gauge failed after the actual strain exceeded its operating range at
a point in the plastic regime, the rest of the strain values were undetermined. The
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Fig. 1 (a) Diagram of FDLU methodology; (b) experimental setup for frequency-scan FDLU testing sample
(aluminum, cubic volume: 80×80×80 mm3). Frequency scanning range 940 kHz–1 MHz; laser power
density: 32 W · cm−2, beam size: 2 mm in diameter, transducer: 19.05 mm PANAMETRICS v314, 1 MHz
nominal frequency response, focal length 48.26 mm. Tensile test dog-bone sample (waist at center, thickness
× width × length: 2 mm × 5 mm × 12.5 mm)

amplitude shows unstable features when the sample underwent plastic deformation as
a result of the large surface deformation. The phase trace is smoother and indicates
two different regions of mechanical strength: The inflection point defines the elastic
limit, about 3500 µm/m, for this material [12].

A complete quantitative explanation of the FDLU signal is difficult, as the geom-
etry of the dog-bone sample is complex and finite. Multiple reflections occur at each
boundary, and it is impossible to find an analytical solutions under such conditions.
However, the source of the signal generation can be generally analyzed qualitatively
as the result of two aspects, namely the surface vertical displacement and elastic prop-
erty change. In agreement with independent measurements, deformation occurs when
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Fig. 2 (a) Surface displacement of the semi-infinite aluminum sample calculated from Eq. 6; (b) calculated
ultrasonic pressure field and wavefronts from the numerical inverse Hankel transform of (1) Eqs. 8, 2 and
9 (transducer at z = −48 mm, f = 1 MHz); (c) frequency-scan experimental results and theoretical
simulations calculated from Eqs. 8 and 9; (laser power: 1 W, beam size: 2 mm in diameter)

123



Int J Thermophys (2017) 38:62 Page 9 of 11 62

Fig. 3 (a) Strain-dependent FDLU signal recorded from two sets of tensile stretching and releasing pro-
cedures within the elastic regime; phase and amplitude channels. (b) Full history of FDLU signal from the
stress-free state to fracture; amplitude and phase channels

the sample is elongated through tensile stressing. For infinitesimal deformation and
cubic materials, the Poisson ratio is ν ≈ δl ′/δl; δl ′(δl) is the deformation perpen-
dicular (parallel) to the direction of stress. The tensile deformation will increase the
distance between transducer and sample surface, and this contribution to the phase
lag increase can be estimated as δϕ1 ≈ 2πδl ′/λ0; λ0 is the ultrasonic wavelength
in water. Next, the elastic parameters are stress dependent, a phenomenon known as
acoustoelasticity [13]. The elastic-wave-velocity stress dependence is expressed as
δc/c = f (τ ), where f is a function that determines the external stress-induced rela-
tive change of wave velocity, so the second contribution to the phase can be estimated
as δϕ2 ≈ 2π f (τ )l0/λ1; l0, λ1 are sample thickness and longitudinal wavelength in the
sample, respectively. So far the effects of surface displacement and elastic property
change were not possible to separate by only using a single modulated frequency.
An alternative investigation procedure is the multi-frequency/frequency-modulated
pulse compression FDLU approach using a linear frequency modulation (LFM) chirp
[14–16]. By cross-correlating the received chirp to the generating signal, this method-
ology allows time delay analysis in the time-domain which can be a good quantitative
solution to this issue.
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5 Conclusions

A flexible FDLU experimental setup based on fiber-coupled laser and immersion trans-
ducers has been built. A semi-infinite aluminum sample was tested experimentally by
means of FDLU and analyzed with a liquid–solid thermoelastic interface theoretical
model. The frequency-scan results indicated that the presence of the transducer can
seriously affect the power spectrum of the pressure wave field in water, which showed
good agreement with the theoretical computation using an acoustic impedance match-
ing boundary condition. Based on the present setup, a non-commercial rig was made
and configured on the FDLU tester for the purpose of tensile testing. Strain depen-
dence of the FDLU at a specific frequency was investigated using a strain gauge as
an independent measure of the applied stress in the rig. Within the elastic regime,
the FDLU signal showed good reproducibility and reversibility with excellent SNR;
for tests beyond the elastic regime, the phase exhibited distinct elastic and plastic
regimes and was more stable than amplitude. Although the FDLU theory presented
in this work can give a reasonable prediction of the frequency-dependent signal, it is
unable to quantify the signal changes due to tensile stressing; therefore, a qualitative
explanation of the signal strain dependence was introduced. The entire FDLU sig-
nal strain history indicates the existence of an elastic limit during the tensile testing.
The FDLU technique makes it possible to monitor the stress–strain relation in a solid
material remotely, instead of having to resort to contact measurements. The mechan-
ical properties of the material can be further estimated from the analysis of the signal
and thus allow the evaluation of its reliability. Compared to pulsed laser ultrasonic
techniques that may require bulky apparatus [17–21] and to pure ultrasonic detection
that requires a contacting piezoelectric device, the FDLU test setup exhibits very good
and reproducible responses in mechanical evaluation studies, benefiting from a fiber-
coupled diode laser as part of a potentially portable instrument for in-field evaluation
of mechanical components and structures.
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