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Abstract Determining and keeping track of a material’s mechanical performance is
very important for safety in the aerospace industry. The mechanical strength of alloy
materials is precisely quantified in terms of its stress–strain relation. It has been proven
that frequency-domain photothermoacoustic (FD-PTA) techniques are effective meth-
ods for characterizing the stress–strain relation of metallic alloys. PTA methodologies
include photothermal (PT) diffusion and laser thermoelastic photoacoustic ultrasound
(PAUS) generation which must be separately discussed because the relevant frequency
ranges and signal detection principles are widely different. In this paper, a detailed the-
oretical analysis of the connection between thermoelastic parameters and stress/strain
tensor is presented with respect to FD-PTA nondestructive testing. Based on the the-
oretical model, a finite element method (FEM) was further implemented to simulate
the PT and PAUS signals at very different frequency ranges as an important analysis
tool of experimental data. The change in the stress–strain relation has an impact on
both thermal and elastic properties, verified by FEM and results/signals from both PT
and PAUS experiments.

This article is part of the selected papers presented at the 19th International Conference on Photoacoustic
and Photothermal Phenomena.

B Huiting Huan
huanht90@sina.com

1 Center for Advanced Diffusion-Wave and Photoacoustic Technologies (CADIPT), Department of
Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada

2 School of Optoelectronic Information, University of Electronic Science and Technology of
China, Chengdu 610054, China

3 Present Address: School of Mechano-Electronic Engineering, Xidian University, Xi’an 710071,
China

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10765-018-2374-3&domain=pdf


55 Page 2 of 11 Int J Thermophys (2018) 39:55

Keywords Finite element method · Nondestructive testing · Photothermal ·
Photoacoustic ultrasound · Stress–strain

1 Introduction

Photothermoacoustic (PTA) techniques enjoy a wide variety of applications in the
field of nondestructive testing of solids and fluids [1–4]. These methodologies gener-
ally involve two physical processes: laser illumination of, and photon absorption by,
a sample, followed by energy conversion in the form of thermal diffusion (photother-
mal, PT) or through further thermoelastic energy conversion into acoustic (ultrasonic)
wave generation due to thermal expansion (photoacoustic ultrasound, PAUS). Either
modality can be used in materials evaluation by means of thermal or acoustic/ultrasonic
detection measurements. PTA applications have been extended to mechanical prop-
erty diagnostics, specifically stress–strain assessment [5–11], which is conventionally
conducted by X-ray diffraction [12]. PTA approaches have the advantage of rely-
ing on a laser source and thermal infrared or acoustic/ultrasonic detectors; therefore,
they are user-friendly and avoid potentially harmful radiation. In recent years, many
experimental implementations of PT and PAUS evaluations on metallic [7–9] and
composite materials [10] have been published and most of them focused on the PTA
signal or image features when the sample was experimentally tensile loaded to plas-
ticity. However, a comprehensive PTA theory correlating the signal to the elastic and
thermal properties change has not been systematically developed. The complexity of
the stress/strain-related problem lies in complicated tensor formalisms and anisotropic
thermal and elastic property analyses. Fortunately, with the help of the finite element
method (FEM), an effective discrete and numerical approach, tensor analysis can
be largely simplified. In this paper we propose a linear elastic PTA theory consid-
ering static external loading and we obtain general analytical expressions on which
the FEM analysis is based. The presented FEM-simulated results are compared with
some frequency-domain PT and PAUS experimental results. The paper concludes
with a comparison between these two approaches when used as nondestructive testing
modalities.

2 Theoretical Analysis

2.1 Linear Photothermal Diffusion Theory with Material Pre-stressing

The reason for discussing the linear theory is to simplify the modeling. The validity of
a linear model is confined within the range of small perturbations resulting in linear
signal generation with laser intensity and a concomitant linear stress–strain relation.
Laser radiation absorption is the fundamental reason leading to PTA signal generation
which must be treated with photothermal diffusion wave theory in the first place.
Prior evidence [5, 13] has shown that under tensile loading, thermal conductivity
would evolve into a tensor. Here we consider a purely tensile or compressive load
that introduces uniform stress distribution inside the solid so that the loading is still
confined within the elastic regime and the solid exhibits a linear stress–strain relation.
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Fig. 1 Pre-stressed linear
deformation photoacoustic
model

A model of a pre-stressed elastic sample is shown in Fig. 1. According to the law of
conservation of energy, heat absorption Q per unit time within an elastic body is equal
to the sum of net heat flux across the surface and the volume heat source g, i.e.,

∫
V ′

∂Q

∂t
dV ′ �

∫
V ′

T
∂S

∂t
dV ′ � −

∮
S′
k∇T · ns′dS′ +

∫
V ′

gdV ′. (1)

S′ and V′ represent the boundary surface and volume, respectively, of the deformed
elastic material; k � kij is the thermal conductivity tensor and is assumed to be sym-
metric and independent of coordinates; and ns′ is an outward unit normal vector. S is
the volumetric entropy density given in the following form [14]:

S(T ) � S0(T ) + I1δi j (3λ + 2μ)αl . (2)

S0(T ) is the system entropy in the absence of external loading; λ and μ are Lamé’s
first and second constants. δij is the Kronecker delta function with δij � 1 for i � j, and
δij � 0 otherwise, αl is the linear thermal expansion coefficient, and I1 is the overall
strain invariant that includes both static and dynamic stress. For harmonic modulation,
the entropy change due to deformation arises either from static stressing which always
reaches dynamic equilibrium, or from modulated laser radiation which is too small to
consider [15]. Therefore, this term is negligible and only S0(T ) should be considered.
Equation 1 takes on the generalized differential form

ρCV
∂T

∂t
−

∑
i, j

∂

∂xi

(
ki j

∂T

∂x j

)
� g, (3)

where ρ and CV are the density and specific heat capacity of the material with respect
to its non-deformed state on which all the differential operators apply. The temperature
field should be that of the deformed system. Following an analysis in seismology [16],
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a Lagrangian coordinate system X(X1, X2, X3) can be defined. The original coordinate
system x(x1, x2, x3) is converted into the new system with the following coordinate
translation relations:

X1 � x1 + ū1, X2 � x2 + ū2, X3 � x3 + ū3. (4)

Here ū : (ū1, ū2, ū3) is the initial displacement vector subject to pre-stress tensor σ̄i j
with i, j = 1,2,3. Applying a coordinate transformation and using the chain rule for
differentiation, the second term of Eq. 3 becomes [11]:

∑
i, j

∂

∂xi

(
ki j

∂T

∂x j

)
�

∑
i, j,l

∂
(
ki j J jl∂T

/
∂Xl

)
∂xi

�
∑

i, j,l,m

(2 − δi j )klm Jil J jm
∂2T

∂Xi∂X j

(5a)

with the following definitions:

Ji j � δi j (1 + ω̄i j ) + (ε̄i j − ω̄i j ),

ε̄i j � (∂ ūi
/

∂x j + ∂ ū j
/

∂xi )/2,

ω̄i j � (∂ ūi
/

∂x j − ∂ ū j
/

∂xi )/2. (5b)

Here, Jij is the Jacobian, ε̄i j is the symmetric initial strain tensor, and ω̄i j is an anti-
symmetric initial rotational tensor equal to 0 if no torsion is exerted on the material.
For the case of axial loading only, the Jacobian explicitly becomes a diagonal matrix,
i.e., Jij = 0 for i �� j. In the case of a two-dimensional thermal wave in the frequency
domain, the use of coordinate notation x and y instead of X1 and X2 modifies Eq. 3 as
follows:

iωρCV T −
[
kxx J

2
11

∂2T

∂x2 + kyy J
2
22

∂2T

∂y2 + (kxy + kyx )J11 J22
∂2T

∂x∂y

]
� g. (6)

Equation 6 suggests that initial stressing will result in anisotropic thermal wave
diffusion by changing the effective thermal conductivity components while the prop-
erties such as ρ and CV are constant. In the frequency domain, the temperature field
is always associated with a characteristic length, namely the thermal diffusion length
which is proportional to f −1/2. If the thermal diffusion length is comparable with the
geometric dimension of the sample, the stress-induced thermal anisotropy becomes
significant and detectable. However, when the modulation frequency is high enough
in the US frequency range (MHz), the corresponding diffusion length is usually neg-
ligible compared with geometric dimensions. In such cases, PAUS effects need to be
considered, as purely photothermal approaches normally do not apply in the MHz
range due to the very large attenuation of the PT signal to below the noise level of the
instrumentation.
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2.2 Linear Photoacoustic Ultrasonic Theory with Material Pre-stressing

Again, the assumption of weak excitation source still stands followed by a linear
stress–strain relation and thermoelastic conversion. For a stress-free elastic material,
various acoustic wave modes can propagate independently, which indicates that lin-
ear elastic deformation seems to have no impact on acoustic waves [17]. Such an
idealized situation is based on a proper infinitesimal strain/deformation assumption
and is applicable for microscale deformations associated with elastic waves. When
static external loading is exerted on a material confined within the elastic deforma-
tion regime, the increased loading magnitude can change the elastic isotropy and wave
propagation pattern. The sample is regarded as undergoing two processes sequentially:
static elongation due to external loading followed by laser incidence and elastic wave
generation. The PAUS signal generation is associated with the latter process either in
the time domain or in the frequency domain. For pre-stressed solids, the balance of
forces with respect to the original coordinates yields:

∑
j

∂σ̄i j

∂x j
� 0. (7)

An incident laser excitation is regarded as a perturbation and is associated with a
dynamic counterbalance stress tensor δσ ij generated by thermal expansion. The linear
stress–strain approximation for such a small displacement is given as [18]

δσi j � λ(δε11 + δε22 + δε33)δi j + 2μδεi j , (8)

where δεij is the laser-induced elastic strain. As both static and dynamic stress/strain
tensors are involved in the deformed system, Hooke’s law cannot be applied directly.
Instead, the free energy function Ft of the system is introduced [17]:

Ft � 1
2

∑
i, j

σi jεi j (9a)

σi j � ∂Ft
∂εi j

� σ̄i j + δσi j . (9b)

σ ij and εij are total stress and strain, respectively, in the deformed state. The free energy
function includes the work done by thermal expansion in which the thermoelastic
coupling coefficient is a function of static load [19, 20] and thus becomes a tensor,
i.e., αl (δi j + hε̄i j ). The work We done during the expansion is expressed as

We � −
∑
i, j

[(
3B + λh Ī1

)
δi j + 2μhε̄i j

]
αlδεi j T . (10)
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In Eq. 10, h is the coupling coefficient between static/initial strain ε̄i j and thermoe-
lasticity, B is bulk modulus of the material, and T is the temperature change due to
laser heating. The thus generated expansion stress tensor σ e

i j is written as

−σ e
i j �

(
∂We

∂δεi j

)
S

� δi jαl (3λ + 2μ + λh Ī1)T + 2μαl hε̄i j T, (11)

where Ī1 � ε̄11 + ε̄22 + ε̄33 is the first invariant of the initial strain. Equation 11 assumes
an adiabatic condition and carries a subscript S. All the stress tensors from Eqs. 9b and
11 form a new equilibrium state and thus should satisfy Hooke’s law in the frequency
domain with respect to the original coordinate system, i.e.,

∑
j

∂σi j

∂x j
�

∑
j

∂δσi j

∂x j

� −ω2ρδui +
∑
j

∂

∂x j

[
δi j (3λ + 2μ + λh Ī1)αl T + 2μhε̄i jαl T

]
. (12)

δui(X1, X2, X3) is the displacement vector transformed into the deformed state. Intro-
ducing a coordinate transformation similar to Eq. 4, combining Eqs. 8 and 12, and
considering a linear strain–displacement relation, we obtain:

∂δui
∂x j

�
∑
k

∂δui
∂Xk

∂Xk

∂xi
�

∑
j

Ji j
∂δui
∂X j

(13a)

2μ
∑
l, j

∂
(
Jl jδεil

)
∂X j

+ λ
∑
j

∂
(
Ji j I1

)
∂X j

− αl

⎡
⎣ ∂

∂xi

(
3λT + 2μT + λh Ī1T

)
+ 2μh

∑
j

∂
(
ε̄i j T

)
∂x j

⎤
⎦ + ρω2δui � 0. (13b)

Again, Jij is the Jacobian and I1 � δε11 + δε22 + δε33. Equations 13 are adequate
to describe the PAUS waves propagating within a linearly pre-stressed alloy although
they have a very complicated form. The temperature term involves contributions from
work sources such as the vibration source and should be obtained by solving Eq. 6.

To simplify the discussion and enhance physical insight, a plane stress–strain prob-
lem with purely uniform stretch is considered so that the Jacobian matrix becomes
symmetric. In practice, since the frequency is up to the MHz range, the diffusion length
is on the order of micrometers and only the surface-temperature-gradient-induced
momentum needs to be considered, with no anisotropic diffusion. The thermoelastic
source/inhomogeneous term in Eq. 13b is then simplified:

−αl

⎡
⎣(

3λ + 2μ + λh Ī1
) ∑

j

Ji j
∂T

∂X j
+ 2μh

∑
l, j

ε̄il Jl j
∂T

∂X j

⎤
⎦

∣∣∣∣∣∣
X3�0

. (14)
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For a two-dimensional stress–strain problem, the homogeneous part of the wave
Eq. 13b is expressed in terms of coordinates x and y instead of X1 and X2:

−ρω2δux � (λ + 2μ)

(
J11

∂δεxx

∂x
+ J12

∂δεxx

∂y

)

+ 2μ

(
J12

∂δεxy

∂x
+ J22

∂δεxy

∂y

)
+ λ

(
J11

∂δεyy

∂x
+ J12

∂δεyy

∂y

)
(15a)

−ρω2δuy � (λ + 2μ)

(
J12

∂δεyy

∂x
+ J22

∂δεyy

∂y

)

+ 2μ

(
J11

∂δεxy

∂x
+ J12

∂δεxy

∂y

)
+ λ

(
J12

∂δεxx

∂x
+ J22

∂δεxx

∂y

)
. (15b)

Again, no torsion is assumed here, so that J12 =J21. The coupled Eq. 15 has lost the
advantage of symmetry and can be regarded as a relative change in stiffness. Referring
to the classical wave equation [21], the target sample becomes acoustically anisotropic
with an equivalent rigidity given by:

R �

⎡
⎢⎢⎣
Rxxxx Rxxyy Rxxxy Rxxyx

Ryyxx Ryyyy Ryyxy Ryyyx

Rxyxx Rxyyy Rxyxy Rxyyx

Ryxxx Ryxyy Ryxxy Ryxyx

⎤
⎥⎥⎦ �

⎡
⎢⎢⎣

(λ + 2μ)J11 λJ11 2μJ12 0
λJ22 (λ + 2μ)J22 0 2μJ12

(λ + 2μ)J12 λJ12 2μJ22 0
λJ12 (λ + 2μ)J12 0 2μJ11

⎤
⎥⎥⎦ .

(16)

In the above form, the symmetric condition Ri jkl � Ri jlk � R jikl � Rkli j is no
longer valid except when J12 = 0 which stands for axial tensile/compressive loading
only.

In summary, Eqs. 6 and 15 show the complete form of anisotropic PT and PAUS
theories, respectively, with temperature and surface displacement as independent
variables. The existence of the factor i in Eq. 6 results in the well-known spatially
exponentially decreasing temperature field. Such a feature is an intrinsic part of ther-
mal wave physics and requires a low experimental modulation frequency for deep
subsurface penetration. However, if low frequency is applied to Eq. 15, the left-hand
side becomes small approaching zero and results in a quasi-static motion with no
elastic wave involvement. As a result, PT and PAUS have to be based on two very
different testing modalities.

3 Results and Analysis

To generate simulations of changes in FD-PTA signals due to stressing, a physical
finite element model was built with Comsol Multiphysics® software. A 20 mm×2 mm
planar aluminum sample model was considered. A Gaussian-shaped laser beam was
harmonically modulated and directed toward the center of the upper surface, thereby
generating an internal temperature gradient which could lead to PT diffusion and PAUS
wave generation and propagation.
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Fig. 2 Simulated and experimental PT signal at 5 Hz modulation. Real part (a) and imaginary part (b) of
the thermal wave field (arbitrary units); (c) simulation of PT phase distribution along half of the upper
surface (ε̄xx � −ε̄yy is assumed; the strain is unitless); (d) PT experimental result of phase distribution in
an aluminum sample under tensile loading [12]. The insets are a magnification of the regions labeled with
dashed-line boxes

We focus on the low frequency range (~ Hz) first where PT effects are dominant,
with a large diffusion area on the same order as the geometrical dimension of the
sample. Based on Eq. 6, the diffusion field of the stressed sample can be simulated
by an FEM of thermal diffusion module. A square element mapping method was
adopted for the complete mesh, and mesh size was set small enough to have 25 to 80
elements in a single diffusion length. For axial loading, the cross-terms of the thermal
conductivity tensor vanish in Eq. 6 and the conductivity change occurs only in the
diagonal/orthogonal components with J12 = 0, J11 ��J22. Simulated results are shown
in Fig. 2. The complex temperature field can be visualized in terms of its real (Fig. 2a)
and imaginary (Fig. 2b) parts. For the presence of initial loading, during the FEM
analysis ε̄xx is assumed to change from − 0.015 to 0.02 with ε̄xx � −ε̄yy . This results
in the thermal wave field along the two axes exhibiting anisotropy. The gradual shift of
the thermal wave phase shown in Fig. 2c reflects the relative change among the stress
tensor components and can thus be used as a stress/strain gauge, as experimentally
proven in Ref. [11]. Figure 2d shows the result of a lock-in thermographic phase image
obtained at 5 Hz under various loading levels in Ref. [13]. The phase distributions are
depicted along the half-way midline of the thermal wave field (see the inset) under
different loading conditions. In this specific case, while the strain changes from 0
to − 0.015, the FEM simulation shows phase changes similar to the ones in Fig. 2d
obtained with lock-in thermography imaging when the experimental strain changed
from 0 μm·m−1 to 2000 μm·m−1 [13]. Such observation indicates that the theory
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Fig. 3 (a) The FEM model of a plane stress–strain problem; (b) simulated PA phase signal changes with
ε̄xx and ε̄yy at the middle part of the upper surface (insets: bottom-left: phase vs. ε̄xx at x = 5 mm, top-right:
phase vs. ε̄xx at x = 11 mm; the correlation ε̄xx � −ε̄yy is assumed for simulation; the strain is unitless);
(c) frequency-domain PA experimental results of an aluminum sample under tensile loading, redrawn from
Ref. [9]

has successfully modeled the thermal anisotropy occurring in the stressed sample. In
fact, the application of FEM becomes the only approach when dealing with a finite
and complicated sample geometry where no analytical solutions to the anisotropic
thermal diffusion equation exist.

When the modulation frequency moves into the ultrasonic range (~ MHz), PAUS
effects become significant and the FEM acoustic module needs to be based on Eqs. 14
and 15. In order that the effects of thermal diffusion and thermoelastic wave propa-
gation might be clearly identified and spatially resolved, two groups of finite element
meshes were introduced: a refined (min. grid size < 200 μm2) mesh grid, designated
for thermal wave simulations, and a normal mapped (ave. grid size: 0.04 mm2) mesh
grid shown in Fig. 3a that was sufficient for elastic wave simulations. For axial loading,
the rigidity matrix becomes symmetric, but remains anisotropic. In the FEM simula-
tion, the strain is changed from − 0.01 to 0.01 with the assumption of ε̄xx � −ε̄yy .
The phase of the vertical component of the harmonic displacement field on the upper
surface with anisotropic rigidity is depicted in Fig. 3b in which a distinctive phase
shift occurs along with the initial stress/strain change. To obtain a better insight of the
phase shift, two specific locations (x = 5 mm and 11 mm) were chosen and the local
phase change with respect to initial strain is illustrated in the insets. The phase change
patterns at the two locations exhibit different trends which indicate the existence of
anisotropy within the sample. Experimentally, the frequency-domain laser ultrasound
test was conducted on a test specimen under uniaxial tensile loading described in Ref.
[8]. As redrawn in Fig. 3c, a gradually decreasing ultrasonic phase signal was obtained
from the experiment which shares similar trends to the bottom-left inset of Fig. 3b. The
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reason for the larger phase shift range observed in the experimental data is that apart
from the effect of changing elasticity of the stretched material, the vertical contrac-
tion or Poisson’s displacement due to loading increases the distance between sample
surface and transducer which introduces an additional phase shift. Such deformation
effect was not possible to exclude from the experimental data. Nonetheless, by consid-
ering the insets of Fig. 3b, FEM analysis based on the foregoing theory shows a linear
phase change with respect to strain value which should contribute to the experimental
signal change.

Compared with the PAUS approach used in this work, PT is entirely based on
optical signal generation and thermophotonic detection, thereby being a truly non-
contacting method, as opposed to the PAUS transducer requirements for an impedance
matching coupling fluid. As regards the magnitude of phase change, PAUS shows a
much larger phase shift in experimental and simulated results. However, spurious
phase shifts due to the stress-induced displacements occur in PAUS which complicate
the analysis. On the other hand, PT signals are functions of thermophysical parameters
only; they are simpler and less sensitive to displacements, plus there are no thermal
wave mode conversions of the types encountered with ultrasound. As a result, the
thermal anisotropy is more easily quantifiable and the overall signal interpretation
becomes considerably simpler and more straightforward.

4 Conclusions

A frequency-domain PTA methodology was developed and applied to the detection of
changes in the stress–strain behavior of metal alloys by evaluating their thermal/elastic
parameters. The theory is based on equilibrium coordinate transformation and involves
the initial (unstressed) stress/strain tensor as an important variable. By focusing on
widely different frequency ranges in the thermal wave diffusion and ultrasonic regimes,
respectively, the FD-PTA theory predicts and derives the anisotropic thermal diffusion
and laser ultrasound equations from a common set of physical considerations follow-
ing optical excitation and light absorption. It indicates the existence of anisotropy
in both thermal conductivity and elastic modulus resulting from the mechanically
induced stress/strain. To estimate the impact of the stress–strain relation change, an
FEM model was used to perform multi-field simulations in terms of harmonic temper-
ature (thermal wave) and vertical displacement (elastic wave) distributions on a 2-D
plane sample at two frequency ranges based on the foregoing modified anisotropic
PT and PAUS theories. The results indicated that by adopting FEM-aided analysis,
the stress–strain condition of finite and complex geometric solids can be evaluated by
PTA methodologies. Compared with PAUS, PT represents a theoretically and experi-
mentally simpler and more straightforward means of evaluating stress–strain behavior
of alloys.
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