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A B S T R A C T

Radar technology plays an important role in modern aviation and navigation. Radar systems use pulse-com-
pression and match-filtering to detect large moving objects in the sky or in water, or small defects hidden inside
industrial components, the object of this paper. We introduce a nondestructive testing (NDT) modality based on
frequency-domain laser ultrasound (FDLU) by means of implementing radar principles: Linear-frequency-
modulated (LFM chirp) excitation CW laser-beam intensity to perform, ultrasonic signal cross-correlation with
the reference signal using pulse-compression and match-filtering, leading to reconstruction of time-domain se-
quences through inverse Fourier transformation at acceptable signal-to-noise ratios. Theoretically, the laser
ultrasound radar (LUR) signal was modelled with both one- and three-dimensional thermoelastic equations, a
combination of which was used to simultaneously predict the correct location and relative amplitude of ex-
perimental targets with relatively simple mathematical expressions that could not be used either in the 1-D (too
simplistic) or in the 3-D (too complicated) approach alone. This methodology was further used to detect buried
defects inside a metal alloy. The results demonstrated that the LUR system is capable of determining the
thickness of the alloy material and quantitatively estimate the subsurface depth of defects in a signal generation
process akin to echolocation.

1. Introduction

In radar and sonar systems, a pulse compression technique is used as
an alternative to obtain generating a single high-peak-power and short-
duration electromagnetic/ultrasonic (US) pulse to obtain time-domain
signals with enhanced signal-to-noise ratio (SNR) by sending a rela-
tively long, wide-bandwidth, coded pulse and compressing the received
pulse into a much narrower response which depends of the time-
bandwidth product [1,2]. Such a signal generation arrangement when
implemented with laser systems has the advantage of requiring a sig-
nificantly smaller laser source and simplified instrumentation system at
the expense of more sophisticated signal processing methods. In the
field of photoacoustic non-destructive testing (NDT), laser ultrasound
mainly operates in the time-domain and relies heavily on high perfor-
mance solid-state pulsed lasers [3–5]. Nevertheless, the photo-thermo-
elastic conversion coefficient is extremely small (∼10−7) if operating
below the destructive laser intensity threshold, and the relatively low
SNR is a severe problem especially with industrial alloy samples [6]. To
improve the situation, instead of resorting to high intensity short-

pulsewidth laser sources and wide-bandwidth optical detectors, a useful
testing schematic is the laser ultrasound radar (LUR), also known as the
photoacoustic radar (PAR), which adopts cost effective, small footprint
CW laser diode sources and narrowband piezoelectric transducers. Such
a configuration applied to biomedical photoacoustics has proven to be
able to obtain an SNR [7–9] comparable to pulse excitation time-do-
main laser ultrasound [10,11]. In our earlier work [7–12] we focused
mainly on biomedical tissues in which the laser beam can travel a
certain distance and generate back-scattered acoustic waves by means
of the photo-thermo-elastic effect. The most important information is
obtained from the cross-correlation peak itself and thus no reflected
ultrasound peak (echolocation principle) is involved. For opaque me-
tallic materials however, light absorption only takes place at the surface
with no light energy penetrating into the sample. In this case laser ul-
trasound can be used to evaluate material parameters and subsurface
defects by acoustic echo analysis. In this work, a systematic investiga-
tion of LUR echolocation implemented on metal alloy samples is pre-
sented. We show that the LUR can determine variations in sample
thickness and the depth of defects.

https://doi.org/10.1016/j.ndteint.2018.11.006
Received 4 June 2018; Received in revised form 10 October 2018; Accepted 14 November 2018

∗ Corresponding author.
E-mail address: mandelis@mie.utoronto.ca (A. Mandelis).

NDT and E International 102 (2019) 84–89

Available online 15 November 2018
0963-8695/ © 2018 Elsevier Ltd. All rights reserved.

T

http://www.sciencedirect.com/science/journal/09638695
https://www.elsevier.com/locate/ndteint
https://doi.org/10.1016/j.ndteint.2018.11.006
https://doi.org/10.1016/j.ndteint.2018.11.006
mailto:mandelis@mie.utoronto.ca
https://doi.org/10.1016/j.ndteint.2018.11.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ndteint.2018.11.006&domain=pdf


2. Experimental

The LUR configuration used in this work is that of a typical fre-
quency-domain photoacoustic system. A 3-W (RMS power) diode laser
was linear-frequency-modulated (LFM) using a chirp from 300 kHz to
2MHz with a ∼ 4-mm beam size in diameter at oblique incidence. Two
samples were used in this test as shown in Fig. 1(a) and (b). An alu-
minum alloy sample with steps of different thicknesses was used to
verify the capability of the LUR system to measure thickness. Further-
more, a piece of stainless steel with artificial horizontal holes at various
depths was machined to test the possibility of defect detection by the
reflected laser-generated ultrasound. The laser induced chirped ther-
moelastic waves propagated in a water couplant and were detected by
an immersion ultrasound transducer (Panametrics® v314, nominal fre-
quency 1MHz) placed right above the laser spot. The system was
controlled by a computer with National Instruments® signal generation
and a data acquisition card which was also responsible for match-fil-
tering of the received acoustic signal as described in Ref. [8].

3. Theoretical background

The modulated incident laser power density was low enough to
ensure the thermoelastic (rather than ablative) modality by which the
ultrasonic wave was generated as a result of thermal expansion upon
surface absorption without damaging the sample surface. In such a si-
tuation, the laser ultrasound signal can be analytically described with a
comprehensive photo-thermo-elastic theory with either a 1D or a semi-
infinite 3D approximation. Both models are adopted in the following
analysis and compared with experimental data to develop an optimized
composite theory. The reason for considering a 1-D laser thermoelastic
model mixed in with the more detailed 3-D model is that the combined
approach is the least complicated way of modeling interface reflection
signals in a finite thickness elastic material. Furthermore, based on the
features of the tested industrial samples, a couple of basic assumptions
were adopted: a) Purely surface light absorption. Alloys are conductors
with large free electron densities so that optical absorption, reflection

and scattering all occur within a very shallow layer (< 100 Å) from the
surface [13]; b) Infinite lateral dimensions. The experimental samples
had much larger lateral dimensions than their thickness. Lateral re-
flections were thus ignored in the 3-D model.

3.1. One-dimensional laser-chirp-induced thermoelasticity

The physical model is shown in Fig. 1(c) and incorporates the in-
finite lateral extent of the solid. Laser ultrasound generation is asso-
ciated with uniform heating and longitudinal stress waves only [14,15].
The thermoelastic equations for frequency-domain independent vari-
ables temperature T, longitudinal stress s and vertical displacement
component w, are respectively:

− ∂ ∂ + =κ T z iωρCT βI ω z/ ( )δ( )f
2 2 (1a)

∂ ∂ − + + =s z λ μ α T z ω ρω w/ (3 2 ) ( , ) 0e
2 (1b)

where κ, αe, ρ, C are the thermal conductivity, the linear thermal ex-
pansion coefficient, the density and the specific heat capacity of the
solid, respectively; λ and μ are its first and second Lamé constants.
ω=2πf is angular frequency. Solving this problem analytically requires
the linear elastic stress-strain relation, viz. = + ∂ ∂s λ μ w z( 2 ) / . The
heating source term If is the Fourier spectrum of the chirp modulated
laser intensity:

∫=
+∞

I ω I t iωt dt( ) ( )exp( )f 0 (2a)

where

= + − < <−I t I ω t πB T t T t T( ) cos( ), /2 /2c c c c c0
1 2 (2b)

The central angular frequency ωc, bandwidth Bc and chirp duration
Tc etc. are defined in Ref. [8]. For a finite thickness sample, the har-
monic solutions for the displacement and water-coupled outgoing
acoustic pressure are:

=p z ω A ik z( , ) exp( )1 0 (3a)

= − + + −w z ω B ik z B ik z B αz( , ) exp( ) exp( ) exp( )l l1 2 3 (3b)

= −
+
+ +

B
λ μ βα I ω

iωρC κk λ μ
(3 2 ) ( )

( )( 2 )
e f

l
3 2 (3c)

=k ω c/0 0 and =k ω c/l l are angular wavevectors in water and sample,
respectively. It should be noted that in Eq. (3a) the pressure wave is
assumed to be strictly forward travelling and does not include a re-
flection term introduced by the transducer surface which normally
should be considered in a harmonic modulation laser ultrasound
scheme [16]. By applying match-filtering and reconstructing the signal
in time-domain, the first back-propagated LUR signal can be easily se-
parated out and the sample-transducer inter-reflections can be com-
pletely eliminated. Also, the sample becomes strictly semi-infinite with
respect to thermal waves within the ultrasonic frequency range and the
adiabatic boundary condition is reasonable to use on the front surface
[16]. The three unknowns (A1, B1, B2) require three boundary condi-
tions on both sides of the interface (as illustrated in Fig. 1(c)). At z=0,
both pressure and velocity are continuous, which yields:

= = − + −p ω s ω A c ρ ik B ik B αB(0, ) (0, ) or ( )l l l1
2

1 2 3 (4a)

= = + +−iωw ω Z p ω A iωZ B B B(0, ) (0, ) or ( )0
1

1 0 1 2 3 (4b)

=Z ρ c0 0 0 is the acoustic impedance of water. At z=D, total reflection
is assumed which is equivalent to a motion-free surface, viz.

∂ ∂ = − + ==
−w z ik e B ik e B/ | 0 or 0z D l

ik D
l

ik D
1 2l l (4c)

The parameter of interest representing the pressure wave can now
be solved for:

Fig. 1. (a) Aluminum step sample used for thickness detection; (b) stainless
block with 3 buried holes; (c) schematic for the theoretical model.
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where =γ Z ρc/s l0 0 is the acoustic impedance ratio between water and
solid.

3.2. Three-dimensional azimuthally symmetric thermoelasticity

The reason for considering the 3-D thermoelastic theory is the in-
ability of the 1-D theory to explain horizontal displacement or lateral
radiation of elastic waves, thus resulting in no dissipation of ultrasonic
energy. To depict elastic waves in a laterally unbounded, finitely thick
solid, it is convenient to use the displacement potential instead of dis-
placement field which can be mathematically derived as:

= = ∇ + ∇ ×u v w ϕu ψ( , , ) (6)

Under azimuthally symmetric conditions, the vector potential ψ
consists of only one component along the azimuthal direction ψ in cy-
lindrical coordinates. The temperature distribution is described by the
thermal-wave equation while the pressure wave, scalar and vector po-
tential all satisfy the wave equations [16,17]:

− ∂ ∂ ∂ ∂ − ∂ ∂ + = ′−κr r T r r κ T z iωρCT βI r ω z( / )/ / ( , )δ( )f
1 2 2 (7a)

∂ ∂ ∂ ∂ + ∂ ∂ + =−r r p r r p z k p( / )/ / 01 2 2
0
2 (7b)

∂ ∂ ∂ ∂ + ∂ ∂ + = + +− −r r ϕ r r ϕ z k ϕ λ μ λ μ βT r z t( / )/ / (3 2 )( 2 ) ( , , )l
1 2 2 2 1

(7c)

∂ ∂ ∂ ∂ − + ∂ ∂ + =− −r r ψ r r r ψ ψ z k ψ( / )/ / 0s
1 2 2 2 2 (7d)

∫′ = ′ ′ = −
+∞ −I r ω I r t iωt dt I r t I t π r r( , ) ( , )exp( ) , ( , ) ( )(2 ) exp( / )f 0

1 2
0
2

(7e)

with similar boundary conditions to those of Eq. (4). =k ω c/s s is the
shear angular wavenumber corresponding to the propagation wave-
vector. The source term ′I r ω( , )f becomes a spatial-coordinate term with
respect to radial coordinate r. Introducing the Hankel transform with
respect to the radial coordinate r for the four variables T, p, φ and ψ
with Bessel functions of the first kind of order 0, 0, 0 and 1, respec-
tively, after some mathematical manipulation the analytical solution for
the pressure wave in the Hankel domain can be derived as:
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The expression for B̂3 includes the Gaussian beam term in contrast
with the uniform illumination 1-D Eq. (3c). In Eq. (8) ζ is the spatial
frequency variable in the Hankel domain with respect to radial co-
ordinate r. Inverse Hankel transformation is required as the last step to
restore the pressure wave field in the spatial domain which includes an

improper integral

∫=
+∞

p r z ω p ζ z ω J ζr ζdζ( , ; ) ˆ ( , ; ) ( )
0 0 (9)

Before performing the integration numerically, it is necessary to
discuss the integrand in Eq. (9) which has several real-axis singularities
and could possibly hinder the integration. The first singularity appears
to be located at ζ=0, however, this point is not singular because the
following limit can be obtained:

= − −
→

p ζ z ω k B ω ik zlim ˆ ( , , ) ˆ ( , 0)exp( )
ζ

s p
0

2
3 (10a)

For the case ζ → kl, the limits of M1, N2 exist and are infinite for M2,
N1 in Eq. (8d), but they do not represent singularities because the fol-
lowing combinations remove the infinities:
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The foregoing two limits further result in a removable discontinuity
at ζ= kl. The third case is →ζ k / 2s which results in γ=0 and the
limit

= −
+

−

− −

−→
p ζ z ω
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(10d)

exists, thereby not representing a singularity but only another re-
movable discontinuity. Similarly, it is easy to prove ζ= kp is also non-
singular. The other singularities are all complex numbers and will not
be included in the integration. It is also noted that the integration
cannot be performed in the complex plane with the application of the
residue theorem since a suitable enclosed contour is absent. Following
these considerations, the improper integration was performed numeri-
cally using a Gauss-Kronrod quadrature [18].

3.3. The match-filtering algorithm

The basic principle of match-filtering is the cross-correlation be-
tween detected signal and reference/excitation that will generate a
sequence of time-delayed echoes. In the frequency-domain such op-
eration can be simplified as the product of the received detector signal
and the complex conjugate of the modulation signal:

�∫= + = − ⋅ ⋅
+∞ − ∗S t s τ I t τ dτ p L ω H ω I ω( ) ( ) ( ) { ( , ) ( ) ( )}r tr f0

1
(11)

Here, s t( )r is the output signal of the transducer given by the con-
volution of the pressure wave p(t) and the transducer impulse response
function htr(t). From the expression of the pressure wave field, the
source term is included in B3 or B̂3 and the cross-correlation simply
becomes an auto-correlation with the identity ⋅ =∗I ω I ω I ω( ) ( ) ‖ ( )‖f f f

2

involved in Eq. (11). The additional information required in Eq. (9) is
the system transfer function. An insightful theoretical model of the
transducer and the photoacoustic signal output can be found elsewhere
[8,19,20]. In this paper, the relative FWHM of the LUR signal peaks is
not a factor of interest and this term is omitted.

4. Results and discussion

4.1. Thickness measurements

The multi-step sample shown in Fig. 1(a) was used for thickness
measurement experiments. Since it had much larger lateral dimensions
than its thickness, any signals resulting from reflections at the lateral
sides were not superposed on the thickness echo and thus could be
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easily truncated out in the time-domain after cross-correlation. The
detected acoustic signals were match-filtered with respect to the laser
modulation reference signal. The group of signals from different
thicknesses is shown in Fig. 2(a). The time resolved LUR signal exhibits
distinctive peaks as a result of pulse compression. For all samples the
strongest peak is located at ∼31 μs and is the laser-induced ultrasonic
response propagating directly to the transducer, henceforth named “the
direct response” (DR) peak. The subsequent small peaks (magnified in
the inset) are the round-trip reflection signals and represent the back
surface echoes (BSE). The BSEs evolve gradually with increasing
thickness from higher, narrower, and earlier-arriving to lower, wider,
and more delayed responses. Such features can be easily explained with
reflection, scattering and lateral energy transport of elastic waves inside
the solid medium. The interval between DR and BSE indicates the
elastic wave propagation velocity, as shown in Fig. 2(b). The calculated
velocity was 6232 (± 226) m/s which is the longitudinal wave velocity
of the aluminum alloy (typical values vary from 6149 to 6412m/s
depending on different manufactures and products [21,22]). The un-
certainty may come from two factors, i.e. the inaccuracy of thickness
measurement and the time interval error between the two peaks.

To match the experimental results to theory, the foregoing theore-
tical analysis was used in a numerical computation. The cross-correla-
tion operation was performed as a multiplication in frequency-domain
and converted to time-domain by a fast Fourier transform (FFT). The
reference LFM signal It in Eq. (2b) has a power spectrum shown in
Fig. 3(a). The ripples are the natural characteristics of the LFM FFT.
Fig. 3(b) shows the spectra of the recorded pressure wave with both 1-D
and 3-D models. Fig. 3(c) plots the cross correlations. The transducer
was placed 50mm above the laser spot, and the corresponding DR lo-
cation was about ∼31.5 μs. Sample thickness used in the simulation
was 8.5 mm and the first BSE occurred ∼2.8 μs behind the DR. By
applying 1-D theory, the interreflections between the front and back
surfaces of the material are clearly shown in terms of echo peaks.
Multiple BSEs exhibit a gradually decreasing pattern of large reflection
peaks commensurate with the DR peak. This is inconsistent with the
experimental results, Fig. 2(a) which show a dominant DR peak much
higher than all BSEs. By contrast, the 3-D model gives the right location
and amplitude level of the DR peak as shown, but since the directivity
of the longitudinal wave induced by laser surface heating involves
strong sidelobes in the acoustic radiation pattern [6,17], longitudinal
wave energy is dissipated rapidly and the BSEs are too small and buried
in cross-correlation-induced ripples, thereby becoming invisible. The
discrepancy between the finite lateral dimension of the experimental

sample and the assumption made in 3D model could also be responsible
for the BSE invisibility. To resolve this unsatisfactory situation, an
empirically combined physical model was used to predict a) the am-
plitude (3-D approach) and b) the location (1-D approach) of the BSEs.
An ad-hoc linear combination of the two models yields:

∫ ∫= +
−∞

+∞ +∞
p z t ap z ω b p ζ z ω ζdζ iωt dω(0, ; ) [ ( , ) ˆ ( , ; ) ]exp( )t 0 (12)

where a and b are real adjustable parameters. The 1-D and 3-D pressure
terms originate in Eqs. (5) and (8a), respectively. Fig. 4 shows the
comparison between the experimental data and the combined theory
predictions. Regarding the DR, both 3-D and combined theory can lo-
cate them with excellent accuracy. In addition, the combined theory

Fig. 2. The LUR thickness measurements. (a) LUR time-domain signal (the inset is a magnification of the evolution of the back surface echoes (BSEs) of different
sample thicknesses); (b) Time-thickness relation using the interval between the direct response (DR) and BSEs.

Fig. 3. (a) power spectrum of laser chirp ((#1–7)300 kHz–2MHz); (b)
Calculated normalized acoustic power spectra using the 1-D and 3-D theories;
(c) Match-filtered LUR signals using the 1-D and 3-D theories.
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features a gradual change of BSE location and peak width with thick-
ness variation which cannot be readily identified with the 3-D theory
due to the presence of strong sidelobes. The narrower theoretical DR
and BSE peak FWHMs are due to the omission of the transducer transfer
function. Since the elastic properties of the tested sample cannot be
precisely known, there is a slight difference in BSE location between
theory and experiment. Nonetheless, the combined theory can suc-
cessfully interpret the pattern of BSE with increasing thickness.

Conventional time-of-flight (TOF) thickness measurements with the
photoacoustic approach usually adopt a pulsed laser as the excitation
source. Specific delay-time control systems and time-frequency domain
analysis are required to ensure the detectability and SNR of TOF signals
[23,24]. However, the foregoing results show that by simply using a
modulated CW laser diode source, the sample thickness can be remotely
measured from the time-delayed photoacoustic signal by match-fil-
tering which sufficiently decreases the optical power requirements and
enhances flexibility.

4.2. Defect detection

The next experimental investigation with the LUR system was to
locate buried defects by using the foregoing US reflection analysis.
Three horizontal holes (diameter: 2 mm) were machined 5mm, 10mm,
and 20mm below the surface of the stainless steel block as shown in
Fig. 1(b). A B-scan schematic is shown in Fig. 5(a). The horizontally
inclined subsurface hole (“defect”) located 5mm deep produced the
curves shown as an example in Fig. 5(b). Care was taken for the relative
distance between the ultrasonic transducer and the laser beam to re-
main fixed during the scanning process. The number of scan steps was
quite limited, so we plotted the group of curves from locations with all
considered “defects” with a single time coordinate shown in Fig. 5(b).
Since the sample thickness was much larger than the defect depth, the
BSEs were not recorded or considered in the ensuing data analysis. The
combined theory successfully predicted the changed signal pattern near
the location of the echo produced by each defect. Again, due to the

omission of the transducer transfer function and the uncertainty of the
actual elastic behavior of the material, the theoretical FWHM is nar-
rower than the experimental FWHM. The defect echoes (DEs) exhibit a
decreasing magnitude and more time-delayed trends with continuously
increasing distance from the hole as the system scans away from the
vertical position (Dx=0) directly above the hole, as expected. The
curve marked “No hole” was used as a reference obtained by scanning
an area far away from the holes.

In order to quantify the response pattern, these DEs must be nor-
malized with respect to an “intact” material reference without subsur-
face holes. The significance of this procedure is two-fold: to eliminate
the spurious ripples resulting from internal transducer reflections and
the sidelobes due to match-filtering, and to exclude the influence of
different surface conditions at various scanning locations. An ideal re-
ference peak for these curves would be the DR which should be re-
garded as the same at all lateral locations. Taking a no-hole DR as the
reference, the seven curves in Fig. 5(b) were first normalized to have
their DR peaks at the same height, then followed by a normalization
(division) of all the other curves with the intact curves so as to reveal
the echoes from the defect. The example of the 5-mm deep hole is
considered again in Fig. 6. A conspicuous right shift of the peaks reveals
the fact that the buried defect gradually moves away from the scanned
laser beam location. The propagation of the elastic wave from the hole
to the scanning system's transducer focal point by reflection can be

Fig. 4. Comparison between LUR theoretical predictions and experimental re-
sults with various sample thicknesses (the dashed windows indicate the BSE of
interest, a=1 and b=1.5 in Eq. (11)): (a) 8.5 mm, (b) 11mm, (c) 13.5 mm.
The narrower theoretical DR and BSE peak FWHMs are due to omission of the
transducer transfer function.

Fig. 5. (a) Schematic of LUR B-scan for subsurface defect inspection applica-
tions; (b) Defect echoes (DEs) for a hole Dz=5mm deep at delay times cor-
responding to scanned horizontal distance Dx.

Fig. 6. Normalized LUR signal with obvious BSEs trends due to a subsurface
hole at Dz=5mm.
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estimated simply from the Pythagorean theorem as:

≈ −D c Δt D( /2)z l x
2 2 (13)

where cl is the longitudinal wave speed in the stainless steel sample and
Δt is the time interval between DR and DEs. It should be noted that this
estimation does not consider the diameter of the hole because its di-
mension is slightly smaller than the elastic wavelength in the sweeping
frequency range. The echo is regarded as generated from the center of
the hole instead of its surface. Adopting cl=5865m/s as the elastic
wave speed for the stainless steel sample [25] we obtained the esti-
mated depth of the three holes as shown in Table 1. The hole depths are
estimated by Eq. (13) and the uncertainty is determined from the fitting
error. The result of the 5mm hole defect shows the largest uncertainty.
This is because the error of time interval estimation and the impact of
cross-correlation-induced ripple lead to a more severe variance for
shallower defects. It is concluded that the LUR technique proves to be
considerably accurate in locating subsurface hole defects down to
20mm. From our experimental data we believe that this is not an upper
depth limit for subsurface hole detection.

The foregoing experimental tests were based on an immersion
transducer which still does not provide a rigorous non-contact mea-
surement. For practical field applications, a re-designed air-coupled
ultrasonic transducer or a fully optical vibrometer can render the
system fully non-contacting. Use of higher frequency ranges with US
wavelengths smaller than defect dimensions will also improve spatial
resolution and detectability at the expense of depth penetration.

5. Conclusions

This research has developed a novel laser ultrasound radar system
to perform thickness measurements and NDT analysis of buried defects.
The LUR system avoids using a pulsed laser and a contact ultrasonic
transducer, and is able to operate in a non-contact mode. The diode
laser was chirp modulated with a LFM from hundreds of kHz to 2MHz.
Pulse compression, match-filtering and cross-correlation of the received
chirp signals transformed the system response into the time-domain. In
the application of thickness measurements, back surface echoes were
detected after the DR peak and were successfully interpreted and pre-
dicted by a combination of 1-D and 3-D thermoelastic theory. The LUR
echolocation scheme was also used for the detection of hidden defects.
With the calculated (or known) longitudinal wave velocity of the
sample, the depths of defects were estimated with excellent accuracy.
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Table 1
Subsurface defect location detection by the LUR technique showing actual and
estimated depths.

Defects ID Real depth LUR Estimated depth

Hole 1 5mm 5.13 ± 0.47mm
Hole 2 10mm 9.59 ± 0.04mm
Hole 3 20mm 19.86 ± 0.07mm
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