
J. Appl. Phys. 124, 205106 (2018); https://doi.org/10.1063/1.5055705 124, 205106

© 2018 Author(s).

Quantitative lock-in thermography imaging
of thermal-wave spatial profiles and
thermophysical property measurements in
solids with inner corner geometries using
thermal-wave field theory
Cite as: J. Appl. Phys. 124, 205106 (2018); https://doi.org/10.1063/1.5055705
Submitted: 10 September 2018 . Accepted: 30 October 2018 . Published Online: 28 November 2018

Mingfeng Wang,  Andreas Mandelis, Alexander Melnikov, and Chinhua Wang

ARTICLES YOU MAY BE INTERESTED IN

Perspective: Principles and specifications of photothermal imaging methodologies and their
applications to non-invasive biomedical and non-destructive materials imaging
Journal of Applied Physics 124, 160903 (2018); https://doi.org/10.1063/1.5044748

Bayesian calibration of strength parameters using hydrocode simulations of symmetric impact
shock experiments of Al-5083
Journal of Applied Physics 124, 205105 (2018); https://doi.org/10.1063/1.5051442

Nano-scale wave dispersion beyond the First Brillouin Zone simulated with inertia gradient
continua
Journal of Applied Physics 124, 205107 (2018); https://doi.org/10.1063/1.5045838

https://images.scitation.org/redirect.spark?MID=176720&plid=1401535&setID=379065&channelID=0&CID=496959&banID=520310235&PID=0&textadID=0&tc=1&type=tclick&mt=1&hc=71bf76294ba1eff3502a31fdb96fd8874112c042&location=
https://doi.org/10.1063/1.5055705
https://doi.org/10.1063/1.5055705
https://aip.scitation.org/author/Wang%2C+Mingfeng
http://orcid.org/0000-0003-0625-8611
https://aip.scitation.org/author/Mandelis%2C+Andreas
https://aip.scitation.org/author/Melnikov%2C+Alexander
https://aip.scitation.org/author/Wang%2C+Chinhua
https://doi.org/10.1063/1.5055705
https://aip.scitation.org/action/showCitFormats?type=show&doi=10.1063/1.5055705
http://crossmark.crossref.org/dialog/?doi=10.1063%2F1.5055705&domain=aip.scitation.org&date_stamp=2018-11-28
https://aip.scitation.org/doi/10.1063/1.5044748
https://aip.scitation.org/doi/10.1063/1.5044748
https://doi.org/10.1063/1.5044748
https://aip.scitation.org/doi/10.1063/1.5051442
https://aip.scitation.org/doi/10.1063/1.5051442
https://doi.org/10.1063/1.5051442
https://aip.scitation.org/doi/10.1063/1.5045838
https://aip.scitation.org/doi/10.1063/1.5045838
https://doi.org/10.1063/1.5045838


Quantitative lock-in thermography imaging of thermal-wave spatial profiles
and thermophysical property measurements in solids with inner corner
geometries using thermal-wave field theory

Mingfeng Wang,1,2,3 Andreas Mandelis,3 Alexander Melnikov,3 and Chinhua Wang1,2,a)
1School of Optoelectronic Science and Engineering and Collaborative Innovation Center of Suzhou Nano
Science and Technology, Soochow University, Suzhou 215006, China
2Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern
Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China
3Center for Advanced Diffusion-Wave and Photoacoustic Technologies (CADIPT), Department of Mechanical
and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada

(Received 10 September 2018; accepted 30 October 2018; published online 28 November 2018)

In this study, we established a theoretical photothermal model and its experimental validation for an
infinitely long solid with an inner corner of arbitrary opening angle, with the solid being irradiated
photothermally by a modulated laser beam of arbitrary spatial intensity distribution directed to the
corner. The thermal-wave field distribution on the flat surfaces of the solid centered at the corner
was obtained using the Green function method. Experimental results based on quantitative thermo-
graphic imaging were obtained and used to validate the theoretical model in which thermal diffusiv-
ity of an inner cornered stainless steel was measured. The thermal-wave theory based lock-in
thermography imaging technique provides a quantitative tool for thermal property measurement and/
or non-destructive evaluation of non-flat structures. It also generates valuable physical insights into
the spatial distribution of the thermal-wave field in the neighborhood of geometric discontinuities
such as inner corners in solids. Published by AIP Publishing. https://doi.org/10.1063/1.5055705

I. INTRODUCTION

Photothermal radiometry (PTR) has been a powerful
tool for the thermophysical characterization and non-
destructive evaluation (NDE) of broad classes of materials
due to its noninvasive and highly sensitive nature. PTR was
introduced by Nordal and Kanstad1,2 who derived analytical
expressions for the PTR response signal and studied the
physics and limitations of the PTR technique stemming from
Planck’s radiation law. Optimal measurement conditions
have been discussed and experiments were carried out on
various types of solid materials and devices such as solar
cells, living plants, and hot objects using PTR.3–6

Photothermal imaging has proven to be well suited for many
applications, with early PTR imaging7 accomplished through
point-by-point scanning of the relative position of the illumi-
nation source (typically a laser) and a stationary or moving
sample. However, the amount of time required for scanning
large structures may be prohibitively long for practical appli-
cations, especially those aiming at imaging deep subsurface
regions. In the 1990s, Busse et al. introduced lock-in ther-
mography (LIT), an infrared camera based phase sensitive
thermal wave imaging technique which greatly improves the
image contrast, signal-to-noise ratio, and sample characteriza-
tion speed.8,9

Furthermore, due to the complex geometries of practical
samples, thermal-wave field descriptions required for PTR

and LIT signal interpretation and sample parameter measure-
ments are difficult to derive, thereby limiting detection to
planar objects and restricting the extent of PTR and LIT tech-
nology applications. For example, thermal contact resistance
measurements at a smooth polymer film and at a polished
metal substrate interface were investigated early on using
pulsed PTR.10 Lan et al.11,12 derived the surface thermal-
wave field of a solid with linearly variable thermal conduc-
tivity as a function of depth and used their theory with exper-
imental frequency-domain PTR data from conventional
industrial hardened metallic and ceramic samples to recon-
struct the depth profiles of the thermophysical properties of
those samples. All the foregoing applications were based on
planar one-dimensional models. With the recent growth in
PTR and LIT applications for imaging characterization of
materials, the demand for theoretical analysis of non-planar
geometry measurements for thermophysical property extrac-
tions has also been growing. Wang et al.13–17 introduced ana-
lytical thermal-wave field representations of cylindrical and
spherical geometries based on Green function formalisms18

and then used this method to study the PTR responses of
surface-irradiated cylindrical and spherical solids. Salazar
and Celorrio19 and Madariaga and Salazar20 performed
similar studies on multilayered cylindrical and spherical
solids using the thermal quadrupole method. In comparison,
the Green function method appears to be able to address the
practical problem of inhomogeneous optical beam power pro-
files in a simpler and more straightforward manner. Using
the Green function method, a solid-wedge sample was also
characterized with frequency scanned PTR at a selected
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single coordinate location.21 Yet, quantitative LIT imaging of
non-planar geometries to-date is still rare. Therefore, in this
work, we report a theoretical and experimental LIT imaging
investigation of an angled corner structure with an arbitrary
opening angle irradiated with an experimentally realistic
nearly collimated, yet mildly divergent, laser beam. The
theory is based on the Green function method.18

II. THERMAL-WAVE FIELD THEORY OF A SOLID
CORNER

The geometry and cylindrical coordinates of a solid with
an interior corner structure at the intersection of two open flat
surfaces forming an arbitrary angle θ are shown in Fig. 1. In
this geometry, the solid region of interest (ROI) spans angle
θ and the opening corner spans angle 2π− θ. The thermal-
wave field of the infinitely long cylindrical solid with an
inner corner and infinite radius r, subject to inhomogeneous
boundary conditions can be derived by means of the Green
function method. The reflectivities of the two walls are R1

and R2. The excitation light beam is directed to the inner
surface of the solid at an arbitrary angle, β.

The harmonic thermal-wave equation for the material
under investigation can be written as

r2T(~r, ω)� σ2(ω) � T(~r, ω) ¼ � 1
k
Q(~r, ω), (1)

where σ(ω) = (iω/α)1/2 is the complex thermal wavenumber, α
(m2/s) and k (W/m K) are, respectively, the thermal diffusiv-
ity and thermal conductivity of the material, ω is the angular
modulation frequency of the laser beam, and Q(r, ω) is the
volume harmonic thermal-wave source at coordinates r = (r, w)
in the material. Based on the Green function method, the
general solution for Eq. (1) can be expressed as18

T(~r, ω) ¼ α

k

ððð
Q(~r0, ω) � G(Q ! rj~r0, ω) � dV0

þ α

þ
S0

�
G(~rj~rs0, ω) � ~r0T(~r

s
0, ω)

� T(~rs0, ω) � ~r0G(~rj~rs0, ω)
�
� d~S0, (2)

where S0 is the surface surrounding the domain volume V0

that includes the harmonic source Q(r0, ω); r0
s is the

source coordinate point on the surface S0. dS0 indicates an
infinitesimal area vector along the outward normal to the
boundary surface S0: dS0 = ndS0, with n being the outward
unit vector, as shown in Fig. 1. G(r|r0,ω) is the thermal-
wave Green function with units of (s/m3). The general
case, Eq. (2), can be simplified depending on specific
material properties and boundary conditions imposed on
the solid. For solids with high optical absorption coeffi-
cients, such as metals, the volume source can be neglected:
Q(r0, ω) ≡ 0. This is the case in this analysis where we
will focus on metallic (opaque) solids which are purely
surface absorbers. Moreover, considering that surface illu-
mination by a laser beam leads to optical-to-thermal
energy conversion essentially entirely on the surface and
that the thermal coupling coefficient between a metallic
solid and the surrounding gas (air) is in the order of
10−3,22 the adiabatic second-kind (Neumann) boundary
condition at the external surface can be applied to a high
degree of accuracy. The homogeneous boundary conditions
for the appropriate Green function and the associated inho-
mogeneous conditions of the TW field function can be
written, respectively, as

k~n � rG(~rj~r0, ω)jw0¼w01,w02
¼ 0, (3)

k~n � rT(~rj~r0, ω)jw0¼w01,w02

¼ (1� RjR¼R1,R2
)F0(~rj~r0, ω)jw0¼w01,w02

, (4)

where F0 is the photothermal heat flux (W m−2) imposed on
the surface, and w01 = 0, w02 = θ. Therefore, in the absence of
volume thermal-wave sources in the solid structure of Fig. 1,
and with the homogeneous boundary conditions for the
Green function shown in Eq. (3), the general thermal-wave
field represented by Eq. (2) for the axially infinitely long cyl-
inder reduces to

T(~r, ω) ¼ α

� þ
S01

F1(~r0, ω) � G(~rj~r0, ω) � d~S01

þ
þ
S02

F2(~r0, ω) � G(~rj~r0, ω) � d~S02
�
, (5a)

where

F1 ¼ F0(1� R1) cos ( β) andF2

¼ F0(1� R2) cos (θ � β) (5b)

are the photothermal fluxes incident on the two angled surfaces
and are generally presumed to be different. G(r|r0, ω) must be
derived so as to satisfy the appropriate homogeneous boundary
conditions on all surfaces enclosing the volume V0.

18

Details of the derivation of the Green function for the
specified geometry are given in Appendix A. In summary,
the appropriate Green function to be used in Eq. (5) was
derived and can be written in terms of the observation coor-
dinate, r, in the form

FIG. 1. Geometry and coordinates of a laser-beam-irradiated solid with an
arbitrary inner opening angle.
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where μn = nπ/θ and r0 is the source variable to be integrated
over the surfaces of the solid on which the laser beam impinges.

Due to the assumed uniform illumination over the entire
inner surface (wall and flat bottom), the geometry can be sim-
plified to that of a random cross section of the solid as follows:
the photothermal source is a heated strip on the surface w01 = 0
and another strip on the surface w02 = θ; in both cases, the 2D
source consists of two lines, on both sides along 0≤ r <∞ so
that the surface integral degenerates to a line integral. In other
words, the outer edges of the angled solid surfaces are too far
away from the illuminated region and are therefore ignored.

If a uniform exciting laser beam generates thermal-
wave flux F0 at an incident angle β, and the Green function
[Eq. (6)] which is obtained according to the corresponding
boundary conditions is substituted into Eq. (5), the thermal-
wave field anywhere on the inner surface and inside the
solid as a function of arbitrary thermal-wave fluxes F1 and
F2 is given as

T(r, w; ω) ¼ 1
θ
[T0(r, w; ω)þ Tθ(r, w; ω)], (7)

with the definitions

and

Inserting Eqs. (8a) and (8b) back into Eq. (7) yields the following expression for the thermal-wave field generated by the
specific thermal-wave fluxes of Eq. (5b) at any point in the material:

where the various symbols have been defined previously.
In the case of vertical walls and an opening angle for 90°,
S0 = S01(w01 = 0) + S02(w02 = θ = 3π/2), so that μn = 2n/3.

The following expressions can now be derived for the thermal-
wave field along the directions of the two vertical corner
walls:

G(~rj~r0, ω) ¼ 1
αθ

�
I0(σr)K0(σr0)þ 2

P1
n¼1

Iμn(σr)Kμn (σr0) cos (μnf) cos ( μnf0), 0 � r � r0

I0(σr0)K0(σr)þ 2
P1
n¼1

Iμn(σr0)Kμn (σr) cos (μnf) cos ( μnf0), r0 � r � 1

8>><
>>: , (6)

T0(r, w; ω) ; K0(σr)
ðr
0
I0(σr0)F1(~r0, ω)dr0 þ I0(σr)

ð1
r
K0(σr0)F1(~r0, ω)dr0

þ 2
X1
n¼1

Iμn (σr) cos (μnf)
ð1
r
Kμn (σr0)F1(~r0, ω)dr0 þ 2

X1
n¼1

Kμn (σr) cos (μnf)
ðr
0
Iμn (σr0)F1(~r0, ω)dr0 (8a)

Tθ(r, w; ω); K0(σr)
ðr
0
I0(σr0)F2(~r0, ω)dr0 þ I0(σr)

ð1
r
K0(σr0)F2(~r0, ω)dr0

þ 2
X1
n¼1

Iμn(σr) cos ( μnf)cos(nπ)
ð1
r
Kμn (σr0)F2(~r0, ω)dr0 þ 2

X1
n¼1

Kμn(σr) cos ( μnf) cos (nπ)
ðr
0
Iμn(σr0)F2(~r0, ω)dr0:

(8b)

T(r, w; ω) ;
1
θ
[K0(σr)

ðr
0
I0(σr0)[F1(~r0, ω)þ F2(~r0, ω)]dr0

þ 2
X1
n¼1

Iμn(σr) cos ( μnw)
ð1
r
Kμn (σr0)[F1(~r0, ω)þ cos (nπ)F2(~r0, ω)]dr0 þ I0(σr)

ð1
r
K0(σr0)[F1(~r0, ω)

þ F2(~r0, ω)]dr0 þ 2
X1
n¼1

Kμn(σr) cos (μnw)
ðr
0
Iμn (σr0)[F1(~r0, ω)þ cos (nπ)F2(~r0, ω)]dr0, (9)
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(a) Along the horizontal plane S01, r = r1, w = 0

(b) Along the vertical plane S02, r = r2, w = 3π/2

It should be noted that for equidistant radial locations
from the corner, r1 = r2 = r, and in the special case where
F1 = F2, the equality T(r, 0; ω) = T(r,3π/2;ω) can be proven,
as expected physically from the symmetric illumination of
both perpendicular plane surfaces.

III. NUMERICAL SIMULATIONS

Although Eqs. (10a) and (10b) explicitly demonstrate
the relationship between the thermal-wave field and the mate-
rial thermal diffusivity and conductivity, and several geomet-
ric and measurement configuration factors for a right-angled
corner structure sample (i.e., θ = 3π/2), the complicated func-
tional dependence of the photothermal signal on the various
system parameters makes any attempt for further understand-
ing of the system behavior under a photothermal probe diffi-
cult. To gain more physical insights into the characteristics of
the thermal-wave field, it is instructive to study its depen-
dence on each individual parameter involved in Eqs. (10a)
and (10b). Considering the nature of LIT as an imaging tech-
nique of surface thermal-wave distributions, only the field on
the sample surface was evaluated. The back-propagation/dif-
fusion (reflection) experimental configuration was used in
this work. In the following simulation, modulated laser illu-
mination was directed to the inner corner at 45° (i.e., β = 45°)
and the mid-infrared camera was assumed tilted also at 45°,
so both surfaces of the right-angle corner were illuminated
uniformly.

Figures 2(a) and 2(b) show the theoretical LIT signal
behavior of a corner structure in a solid sample at several
modulation frequencies measured on the surface (w = 0).
Figures 2(c) and 2(d) show the effect of material thermal dif-
fusivity variation on the thermal-wave field measured on the

surface (w = 0) at 1.2 Hz. The material parameters of the
corner structure (stainless steel AISI304 is assumed) used in
the simulation were as follows: α = 4.05 × 10−6m2/s,22 F0 =
1W/cm2 (absolute value of F0 has no effect on the thermal-
wave distribution). The amplitude and phase were self-
normalized in that amplitude was divided by the first point,
i.e., the amplitude at r = 0, and the phase was subtracted from
the phase at r = 0. It is seen that both amplitudes and phases
are sensitive to the value of the modulation frequency and
thermal diffusivity: As frequency increases or diffusivity
decreases, the peak/valley positions of the amplitude and
phase distributions shift toward shorter radial locations away
from the corner. This correspondence between frequency and
diffusivity is expected from the structure of the thermal
wavenumber, the main parameter controlling the behavior of
the thermal-wave field. These maxima are the result of self
interference between the two branches of coherent thermal-
waves photothermally launched on both sides of the corner
wall. As the thermal wavenumber increases, this effect
becomes confined closer to the origin at r = 0, an effect that
amounts to higher spatial resolution of the LIT image.
Amplitude and phase also change dramatically with the
opening angle. Figures 3(a) and 3(b) show the effect of
opening angle θ [using Eq. (9)] on the thermal-wave field
measured on the sample surface (w = 0) at 1.2 Hz. The mate-
rial parameters used in the simulation and the normalization
process of amplitude and phase are the same as those in
Fig. 2. It is observed that the curvatures of the radial dis-
tributions change sign on either side of the case θ = π (a
uniformly illuminated continuous plane surface). The sim-
ulations of Figs. 2 and 3 yield valuable physical insights into
the behavior and spatial distribution of thermal waves in solids
with sharp inner boundaries and material discontinuities like

T(r1, 0; ω) ;
2
3π

[K0(σr1)
ðr1
0
I0(σr0)[F1(~r0, ω)þ F2(~r0, ω)]dr0 þ 2

X1
n¼1

I2n=3(σr1)
ð1
r1

K2n=3(σr0)[F1(~r0, ω)

þ (�1)nF2(~r0, ω)]dr0 þ I0(σr1)
ð1
r1

K0(σr0)[F1(~r0, ω)þ F2(~r0, ω)]dr0 þ 2
X1
n¼1

K2n=3(σr1)
ðr1
0
I2n=3(σr0)[F1(~r0, ω)

þ (�1)nF2(~r0, ω)]dr0:

(10a)

T(r2, 3π=2; ω) ;
2
3π

[K0(σr2)
ðr2
0
I0(σr0)[F1(~r0, ω)þ F2(~r0, ω)]dr0 þ 2

X1
n¼1

I2n=3(σr2)
ð1
r2

K2n=3(σr0)[(�1)nF1(~r0, ω)

þ F2(~r0, ω)]dr0 þ I0(σr2)
ð1
r2

K0(σr0)[F1(~r0, ω)

þ F2(~r0, ω)]dr0 þ 2
X1
n¼1

K2n=3(σr2)
ðr2
0
I2n=3(σr0)[(�1)nF1(~r0, ω)þ F2(~r0, ω)]dr0: (10b)
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corners. The presence of the vertical corner (θ = 270°)
walls at the origin, when compared to plane surfaces, repre-
sents a sudden increase in the extent of the solid medium
beyond the confines of each wall which maintains the
thermal-wave amplitude high. It is interesting to observe
the thermal-wave interference patterns (weak amplitude
maxima) in Fig. 2 near the wall within distances compara-
ble to the thermal diffusion length. They are the result of
coherent superposition of accumulating thermal waves
against the wall surface and the forward diffusing thermal
waves toward that direction. However, at distances shorter
than the interference maximum locations, additional diffu-
sion/propagation degrees of freedom (DOFs) beyond the
vertical wall and into the other side of the corner emerge and
dominate the wall-originated confinement. As a result, the
thermal-wave amplitude plunges in the neighborhood of the
origin while the phase lag sharply increases as the thermal
wave spreads into the other side away from the origin. Figure 3

clearly shows the effects of asymmetry of the thermal-
wave distributions with the same optical source incidence
at several opening angles: The thermal-wave field at an
inner right corner (θ = 270°) is not the symmetric counter-
part of the field generated inside a θ = 90° right edge. In
the former case, the two vertical walls of the right-angle
corner produce the aforementioned thermal-wave patterns
with the amplitude decrease near the origin. In the latter
case, the solid right edge represents a double confinement
region of thermal waves generated on both side walls and
the superposition amplitude increases with decreasing dis-
tance from the origin. Besides their intrinsic theoretical and
physical interest, these radial distributions can be used to
evaluate the effective photothermal behavior of inner corner
structures under optical irradiation for practical applications
of the non-destructive LIT technique.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

To verify the foregoing theoretical model, LIT imaging
experiments were performed using a corner structure sample
(made of stainless steel AISI304) with fixed θ = 3π/2 (a 90°
corner when viewed from the outside). Figures 4(a) and 4(b)
show the schematic diagram of the LIT imaging setup and
configuration. A semiconductor laser (∼40W, 808 nm) was
used as the (photo)thermal-wave source. The output of the
laser was modulated by a periodic voltage, the modulation
frequency of which was controlled by a computer which also
served as the lock-in reference. The laser beam was expanded
and collimated onto the surface of the sample with a spot
size of ∼40 mm. The harmonically modulated infrared radia-
tion emitted from the sample surface was detected by a mid-
infrared camera (Cedip Titanium model 520M). All measure-
ments were carried out at room temperature (300 K).
Modulated laser illumination was directed to the inner corner
at β = 45° and the mid-infrared camera was also tilted at
β = 45°, so both surfaces of the right-angle corner were

FIG. 2. Theoretical amplitude and phase curves for various frequencies and
thermal diffusivities as functions of radial coordinate. Amplitudes and
phases are normalized to their values (self-normalized) at the origin r = 0.

FIG. 3. Theoretical amplitude and phase curves for various opening angles
as functions of radial coordinate. Amplitudes and phases are normalized to
their values (self-normalized) at the origin r = 0.
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illuminated symmetrically. The computer received the
camera signals, the latter being connected to it through a data
acquisition interface (National Instruments, NI USB 6229).
Then a LABVIEW digital lock-in algorithm was used to
process data and demodulate pixel signals in the form of
amplitude and phase images. The blue box in Fig. 4(b) delin-
eates the area the camera could detect and the red dashed line
represents the pixel row of data used for fitting the theory to
the data.

Figure 5 shows the demodulated amplitude and phase
images obtained from the steel sample in a quantitative
manner. From Figs. 5(a) to 5(f ), the horizontal and vertical
axes are the pixels of the camera, with color coding of the
amplitude and phase values. To compare with the theory,
pixel row data were selected along the horizontal red line in
Fig. 4(b) and were self-normalized as defined below. Taking
into account the symmetry of both sides, only data of the
80th row of a total of 160 rows on one side of the corner
were considered. Figures 5(g) and 5(h) show linescans of the
amplitude and phase of the 80th row in the image. The
amplitude and phase are self-normalized, i.e., the group of
pixel-row signal amplitudes was divided by the maximum
amplitude, and from the group of phases, the minimum
phase was subtracted. The self-normalized method was found
to be useful for minimizing noise and eliminating the back-
ground of the experimental results. It should be noted that

the number of pixels in Fig. 5 must be calibrated into the
absolute length or coordinate (i.e., r in the theory) in order to
quantitatively fit the experimental data to theory. The calibra-
tion of the camera pixel array to the absolute coordinates on
the sample surface was easily performed by placing a
Vernier caliper in front of the camera at the same position as
the sample. In this manner, the length on the caliper corre-
sponding to the number of pixels could be precisely
obtained, and subsequently the length corresponding to each
pixel (i.e., calibration constant a, in units of m/pixel) could
be calculated. Furthermore, considering the fact that the
surface of the sample was at an angle of 45° with respect to
the axis of the camera lens, the absolute coordinate on the
slanted surface must be calculated considering the effect of
projection from the camera pixels to the coordinate length on
the surface. The relationship among the length (coordinate)
on the surface (r), calibration constant (a), slant angle of the
surface (π− θ/2), and the number of pixels (P) are r = Pa/
cos(π− θ/2). The calculated r was used in the fitting process
as shown in Eqs. (10a) or (10b). It should be emphasized
that the accuracy of the conversion process from pixel

FIG. 4. (a) Schematic diagram of the LIT imaging experimental setup; (b)
schematic diagram of the imaging configuration.

FIG. 5. LIT amplitude [(a), (c), and (e)] and phase [(b), (d), and (f )] images
of the inner corner at 0.6 Hz, 1.2 Hz, and 4.8 Hz. Line scans of amplitude (g)
and phase (h) at the pixel row # 80.
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number (P) to the coordinate length (r) directly affects the
best-fitted value of thermal diffusivity, which can also be
seen from the structure of Eqs. (10a) and (10b) in that
thermal diffusivity and coordinate length appear together as a
product.

It was found that the experimental data showed an
increasing divergence from the theory with increasing radial
distance from the origin at r = 0, as seen in Fig. 2 with a
declining amplitude with increased r. To identify the source
of this discrepancy, several groups of experiments were
carried out. Among the various possibilities, the mild diver-
gence of the laser beam past the expander, Fig. 4(a), was
found to be the most likely source of the radial disagreement
with the theory of Eqs. (8–10). It should be recalled that the
thermal-wave theory that led to those equations assumed
uniform surface irradiation.

To verify the effect of the divergence angle of the
expanded laser beam on the amplitude and phase images,
further experimental confirmation was sought. Figure 6(a)
shows the schematic of the experimental measurement when
a diverging laser beam is incorporated. Figure 6(b) shows the
self-normalized amplitude and phase when the corner sample
was placed at different distances from the beam expander.
The divergence angle Φi of the excitation beam impinging
on the interrogated surface is a function of the distance d
between the sample and the beam expander: d can be varied
and Φi calculated for each value of d. In our experiment, the

maximum Φi was around 20°. It is seen from Fig. 6(b) that
when the divergence angle Φi increases, the amplitude
decreases at large distances from the corner origin: the
greater the value of Φi, the steeper the amplitude decline.
However, the phase does not change significantly with Φi.

In what follows, the thermal-wave theory was general-
ized to include the effect of variable optical source intensity
profiles. Essentially, the diverging angle geometry renders
the incident optical flux F0 a function of r, rather than a cons-
tant over r when the incident light is a collimated beam as
assumed in the theoretical simulation of Fig. 2. Using

F ¼ P

S
, (11)

where F is the laser intensity, P is the power, and S is the
irradiated area, and introducing a geometric optics model of
light ray propagation in a planar geometry, the expression of
modified intensity can be shown to be

F(r) ¼ I0 cos
π

4
� [1� C1 tan (C2r)]: (12)

Here, C1 = (Lx/x)cos(π/4), C2 = (1/Lj) cos(π/4), and I0 is the
laser intensity without beam divergence (a constant); x is the
half width of the non-diverged laser beam as it emerges from
the expander; Lx is the distance between the expander and the
outer edge of the divergent beam at the intersection with the
solid wall; and Lj is the distance between the expander and
the edge of the non-divergent (ideally collimated) beam at
the intersection with the solid wall. The geometric schematic
and details of the derivation of Eq. (12) are given in
Appendix B.

Introducing Eq. (12) inside the radial integrals of Eq.
(10) to replace the (previously assumed constant) fluxes F1

and F2 gives a generalized thermal-wave theory of the LIT
imaging system under a diverging laser-beam illumination.
Based on the generalized theory of Eqs. (10) and (12), best
fits to the radial distribution of the camera LIT signals from
the selected pixel row were conducted using either the ampli-
tude or the phase data from the three frequencies shown in
Fig. 5. Figure 7 shows that the generalized theoretical ampli-
tude and phase curves fit the experimental data very well. In
the fitting process, the thermal diffusivity and C1 and C2

were assumed to be best-fit parameters in the MATLAB
program. The theoretical values were also self-normalized for
consistency and comparison. It is noted that the origin of the
coordinate system (i.e., zero point of the coordinate, r) must
also be determined when the imaging data are used in the
theoretical fitting. There is a difference (offset Δr) between
the theoretical origin and the starting point in the imaging
data. The offset of the origin Δr was determined as a fitting
parameter. In the fitting process, three sets of experimental
data at frequencies f = 0.6, 1.2, and 4.8 Hz shown in Fig. 5
were fitted to the theory as a whole using one set of fitting
parameters (α, C1, C2, Δr) considering the fact that all the
data at different frequencies were taken from the same mate-
rial. The best-fit results yielded α = 4.2 × 10−6 m2/s, C1 = 3.5,
C2 = 6, and Δr = 1 × 10−5m. According to published data,22

the thermal diffusivity of AISI304 steel is 3.95 × 10−6 m2/s at
300 K and 4.08 × 10−6 m2/s at 400 K. In the experiment, the

FIG. 6. (a) Schematic diagram of the experimental setup for exploring the
effect of beam divergence angle on the LIT image. d: distance between
expander and sample; Φi: divergence angle. (b) Experimental amplitude and
phase at various divergence angles obtained at 2 Hz.
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actual temperature of the sample after being irradiated by the
laser was 330 K. The calculated thermal diffusivity at 330 K
is 3.99 × 10−6 m2/s if a linear relation is assumed, the error
being 5% compared to the best-fitted value.

The fitting error at each frequency was estimated using
the square root of the ratio of the average deviation between
the experimental data and the theoretical fits to the normal-
ized amplitude and phase, i.e.,

error ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X2
i¼1

PN
j¼1

[Pi, fit( fj)� Pi,e( fj)]
2

PN
j¼1

[Pi,e( fj)]
2

vuuuuuut , (13)

where i = 1 and 2 represent the amplitude and the phase,
respectively. N is the total number of data points. Pi,e( fi)
denotes the experimental amplitude and phase, and Pi,fit( fi)
denotes the amplitude and phase calculated with the theoreti-
cal model. The root-mean-square (rms) errors between the
theoretical value (amplitude and phase) and the experimental

data were 0.026, 0.016, and 0.093 at 0.6 Hz, 1.2 Hz, and
4.8 Hz, respectively. The error at each frequency is very
small and the experimental results fit the theoretical curve
very well. This model can be widely used in the field of
infrared nondestructive testing under experimentally real-
istic conditions.

V. CONCLUSIONS

In summary, we have formulated a new generalized
thermal-wave model that is suitable for quantitative char-
acterization of solids with arbitrary inner angle openings irradi-
ated with diverging or otherwise inhomogeneous laser beams
using lock-in thermography (LIT) imaging. Expressions for
the thermal-wave field distribution on the surface of the
solid were obtained using the thermal-wave Green function
method. The influence of the excitation light beam diver-
gence angle on the amplitude was found to be necessary to
incorporate into the theory, and the generalized model was
verified by best fitting the radial thermal-wave field away
from the corner origin to the LIT data from the infrared

FIG. 7. Experimental results and the
corresponding generalized theoretical
model fits for the AISI 304 steel
sample at 0.6 Hz, 1.2 Hz, and 4.8 Hz.
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camera. The theoretical model yielded valuable physical
insights into the behavior of thermal-wave fields in the
neighborhood of, and across, abrupt material geometric
discontinuities such as an inner corner. The thermal dif-
fusivity of the solid was also extracted from the corner
thermal-wave field measurements along single-line radial
pixel profiles in the irradiated area. This method allows
the reconstruction of thermophysical parameter images in
non-planar solids.
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APPENDIX A: THERMAL-WAVE (TW) GREEN
FUNCTION FOR AN ANGLED CORNER STRUCTURE

Here, we calculate the Green function for a cylindrical
sector of infinite height, radius R, opening angle θ, and a
cylindrical-strip thermal wave source located at r = r0.
Homogeneous Neumann conditions are prescribed at r = R
and w = 0, θ.

A cross-sectional view of the infinite-height geometry is
shown in Fig. 8. The TW Green function satisfies the equa-
tion

1
r

@

@r
r
@

@r
G(~rj~r0; ω)

� �
þ 1
r2

@2

@w2
G(~rj~r0; ω)

� σ2G(~rj~r0; ω) ¼ � δ(r � r0)δ(w� w0)
αr

: (A1)

This is a two-dimensional version of the more com-
plete three-dimensional cylindrical coordinate equation. The
homogeneity of the spatially impulsive source along the
z axis renders the Green function independent of the
coordinate z. Separation of variables G(r, w |r0; ω) = R(r)
Φ(w) for all points r ≠ r0 leads to the ordinary differen-
tial equations

r
d

dr
r
dR(r)
dr

� �
� (σ2r2 þ λ2)R(r) ¼ 0 (A2)

and

d2Φ(w)
dw

þ λ2Φ(w) ¼ 0: (A3)

The solution to the boundary-value problem consisting
of Eq. (A3) plus homogeneous Neumann boundary con-
ditions at w = 0, θ is the eigenfunction set

Φn(w) ¼ An cos (λnw), λn ¼ nπ

θ
, n ¼ 0, 1, 2, . . . : (A4)

The solution to the radial equation can be written in

terms of two linearly independent function families

Rn(r) ¼ BnIλn (σr)þ CnKλn (σr), (A5)

where Iλn(σr) and Kλn (σr) are modified Bessel functions
of the first and the second kind, respectively, of non-
integer order λn and of complex argument. Representations
and approximations of these functions are given in
Abramowitz and Stegun.23 Summing up over the complete
eigenfunction set {cos(λnw)}, we may express the Green
function as

G,(r, wj~r0; ω) ¼
X1
n¼0

anIλn(σr) cos (λnw), 0 � r � r0, (A6a)

G.(r, wj~r0; ω) ¼
X1
n¼0

[bnIλn (σr)þ cnKλn (σr)]

� cos (λnw), r0 � r � R, (A6b)

where G< stands for the inner solution below the synco-
pated tangential line and G> stands for the outer solution
above the line in Fig. 8.

As usual, we require continuity of the Green function at
r = r0,

G,(r, wj~r0; ω) ¼ G.(r, wj~r0; ω), (A7)

and discontinuity of its radial derivative

@

@r
G.(r, wj~r0; ω)jr¼r0

� @

@r
G,(r, wj~r0; ω)jr¼r0

¼ � δ(w� w0)
αr0

: (A8)

The exterior homogeneous Neumann boundary condition
∂G>(r, w|r0; ω)/∂r |r=R = 0 can be used to determine each
and every partial thermal-wave coefficient set (an, bn, cn).
This is done in a straightforward manner if Eqs. (A6a) and
(A6b) are inserted in Eq. (A1), and the angular complete-
ness relation,18

δ(w� w0) ¼
1
θ

1þ 2
X1
n¼1

cos
nπw

θ

� �
cos

nπw0

θ

� �" #
, (A9)

FIG. 8. Cross section of a corner structure for calculating the Green
function.
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is also used to expand the Dirac delta function δ(w− w0).
It is found that the term n = 0 must be taken separately
from the n > 0 term due to the different relative weight of
the n = 0 versus n > 0 terms in the δ(w− w0) expansion
above. In deriving the Green-function coefficients in (A6a)
and (A6b), the following Wronskian identity is used:

W[Kv(z), Iv(z)] ¼ Kv(z)Ivþ1(z)þ Kvþ1(z)Iv(z) ¼ 1
z
: (A10)

In addition, the general recurrence relations can be used to
show that for any integer and non-integer ν,

K 0
ν(σr0) ¼ �σKνþ1(σr0)þ ν

r0
Kν(σr0), (A11)

I 0ν(σr0) ¼ σIνþ1(σr0)þ ν

r0
Iν(σr0), (A12)

where I 0ν(σr0) = dIv(σr0)/dr|r=r0. These relations can be
used to prove the identity

Inπ=θ(σr0)K
0
nπ=θ

(σr0)� Knπ=θ(σr0)I
0
nπ=θ

(σr0) ¼ � 1
r0
: (A13)

Finally, the complete expression for the thermal-wave
Green function in the domain of the cylindrical wedge of
Fig. 8 is derived as follows:

G(~rj~r0,ω)¼ 1
αθ

�

I0(σr)
I 00(σR)

[I 00(σR)K0(σr0)�K 0
0(σR)I0(σr0)]

þ2
P1
n¼1

Inπ=θ(σr)

I 0nπ=θ(σR)

�
�[I 0nπ=θ(σR)Knπ=θ(σr0)

�K 0
nπ=θ(σR)Inπ=θ(σr0)]�cos

nπw

θ

� �
cos

nπw0

θ

� �
g,0�r�r0

I0(σr0)
I 00(σR)

[I 00(σR)K0(σr)�K 0
0(σR)I0(σr)]

þ2
P1
n¼1

Inπ=θ(σr0)

I 0nπ=θ(σR)

�
�[I 0nπ=θ(σR)Knπ=θ(σr)

�K 0
nπ=θ(σR)Inπ=θ(σr)]�cos

�nπw
θ

�
cos

�nπw0

θ

�o
,r0�r�R

8>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>:

(A14)

APPENDIX B: INTENSITY OF EXCITATION LASER
SOURCE WITH BEAM DIVERGENCE

Figure 9 gives the geometry of a right-angled corner
structure illuminated with a divergent laser beam incident at
45° with respect to both surfaces. When r/Lj≪ 1

tan θ ¼ DE

OE
¼

r cos
π

4

Lj � r cos
π

4

� r

Lj
cos

π

4
= 1� r

Lj
cos

π

4

� 	

� r

Lj
cos

π

4
: (B1)

The coordinate y is perpendicular to the plane of the
sheet

Intensity ¼ F(AH þ r) ¼ P

y(AH þ r)
¼

P cos
π

4
y(xþ Δx)

: (B2)

Let

I0 ¼ P

xy
, (B3)

where I0 is a constant intensity corresponding to ideal fully
collimated laser beam excitation. Inserting Eq. (B3) into
Eq. (B2):

F(AH þ r) ¼ I0 cos
π

4
1� Δx

x

� 	
, (B4)

where

Δx ¼ Lx tan θ: (B5)

Using Eqs. (B1) and (B5) in Eq. (B4), one derives

F(r) ¼ I0 cos
π

4
[1� C1 tan (C2r)], (B6)

where C1 = (Lx/x)cos(π/4) and C2 = (1/Lj) cos(π/4).
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