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ABSTRACT

In the present study, transient thermography, a nondestructive imaging technique, is applied to evaluate the transient temperature response
in a graded medium without the use of embedded thermocouples. A layered composite sample was fabricated from Al2O3 and Y-ZrO2

powders using powder metallurgy (PM). This sample was irradiated on one side with a direct current laser while the transient temperature
was measured along its depth by a midinfrared camera. Also, a MATLAB code based on the truly meshless radial point interpolation
method (t-RPIM) was developed and implemented to solve the problem of quasilinear transient heat transfer in PM solids. In the t-RPIM
formulation, the Cartesian transformation method and the Crank-Nicolson scheme were used for the evaluation of domain integrals and
time discretization, respectively, thereby yielding a truly mesh-free technique. In the conducted experiment, the thermophysical properties
were assumed to be independent of temperature because of the small amount of temperature increase. These properties and the volume
fractions of the constituent powders were determined using a combination of the t-RPIM and the damped Gauss-Newton method in an
inverse analysis. Good agreement was found between the measured temperature and the reconstructed temperature profile using the
identified thermal parameters and volume fractions, thus validating the accuracy and ability of the applied t-RPIM as a tool in an inverse
scheme to solve the inverse transient heat conduction problem in nonhomogeneous media.

Published under license by AIP Publishing. https://doi.org/10.1063/1.5116709

I. INTRODUCTION

Nowadays, scientists and engineers recognize the importance
of the use of innovative materials for economic and environmental
reasons.1 Functionally graded materials (FGMs) are new genera-
tions of composite materials, which can help achieve desirable
structural behavior. This makes graded materials suitable candi-
dates for numerous applications in aerospace, bioengineering, etc.2

The gradual changes in the volume fraction of the constituents of

an FGM provide continuously graded macroscopic properties, such
as hardness, wear resistance, corrosion resistivity, thermal conduc-
tivity, specific heat, etc., that are critical for thermal barrier coatings
(TBCs), thermal protection of space capsule re-entry, furnace
liners, body armor, piezoelectric actuators, and electromagnetic
sensors.3–6 Other applications include high current connectors and
capacitors.7,8 In addition, functionally graded electrodes for solid
oxide fuel cells (SOFCs) are widely used in the energy sector.9
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In this article, the thermal behavior of a layered composite sample
as a representative of graded materials is studied.

Considering the increasing applications of graded materials,
the development of reliable methods for the evaluation of their
thermal response is critical. Usually, in a graded material, there is a
gradual or stepwise change of properties perpendicular to the body
surface, so many traditional steady-state evaluation techniques like
those for thermal conductivity measurement cannot be used.10

Standard nondestructive evaluation (NDE) techniques such as
photothermal radiometery (PTR), acoustic emission (AE), and
eddy current have been used in the evaluation of graded materials.
Measurements of their thermal diffusivity and thermal effusivity
have been made using PTR.10–12 In the PTR technique, the front
surface of the sample is heated using a modulated heat source. The
thermal-wave response is measured from the front surface as a
function of frequency, and the thermal-wave amplitude and phase
can be used for the reconstruction of thermal diffusivity depth pro-
files. In addition, thermal shock tests with in situ acoustic emission
are used to study the cracking behavior of plasma sprayed function-
ally graded thermal barrier coatings.13 Nondestructive techniques
such as infrared imaging and ultrasonic testing are also used for
defect detection in FGMs.14

To evaluate the performance of graded materials, it is crucial to
develop tools to reconstruct their thermal properties. Since the first
step in the reconstruction process is having a reliable numerical
method that could calculate the temperature distribution, validation
of the t-RPIM15,16 (Appendix A) through an experimental study is
valuable. Generally speaking, much work has been done on the
reconstruction of thermal properties in graded materials using
inverse algorithms in combination with numerical methods.17–19

Furthermore, having a reliable numerical method to predict the
thermal response of the graded materials provides the possibility of
identification of the shape and location of voids and inclusions in
the graded materials using inverse algorithms in diagnostic and
structural health monitoring (SHM) applications. For example, the
boundary element method (BEM) was applied in combination with
the Particle Swarm Optimization (PSO) algorithm20 to estimate the
thermal conductivity and shape of an inclusion inside a solid body
under steady-state conditions.

Photothermal imaging is a noncontact, fast, and reliable diag-
nostic method.21 It is also used in biomedical applications such as
detection of early dental caries with better sensitivity than radiogra-
phy.22,23 In this work, infrared thermographic imaging was used to
measure the transient temperature distribution in a layered medium
irradiated by a laser beam without using embedded thermocouples.
The experimental results were interpreted in terms of a theoretical
analysis of the nonlinear transient temperature response in a quasi-
linear limit of temperature rise and its numerical implementation.
Best fits of the theory to the data using an inverse algorithm allow
the estimation of material properties like thermal conductivity and
specific heat and their distribution along the specimen depth coordi-
nate. In order to generalize this method to continuously graded
materials, a nonlinear volume fraction function like an exponential
with a limited number of parameters for effective property calcula-
tions in the FGM and evaluation of these parameters in an inverse
algorithm has been used in the literature18,24–26 and could be applied
here, too. However, in this article, only a layered composite sample is

studied. In general, the properties of materials manufactured/
fabricated using the powder metallurgy (PM) method depend on the
processing parameters; therefore, they require determination by a
case-by-case analysis.10 Toward this goal, an approximation of the
temperature dependence of the constituent materials thermophysical
properties was assumed based on literature values. These empirical
relations for the variation of the thermophysical properties with tem-
perature showed that their change with temperature within the range
of our experiments was negligible. As a result, constant values were
adopted for the thermophysical properties of the constituent materi-
als. Since the parameters of the PM process can have a significant
effect on the thermophysical properties of the fabricated sample,
identification of the actual properties of the fabricated samples using
the PM techniques is quite important. Therefore, based on the ther-
mographically measured temperature depth profile of the fabricated
sample, its thermophysical properties were determined through an
inverse analysis in this work. The theory further allowed the estima-
tion of volume fractions of the constituent materials as a function of
depth. Validation of the determined thermal property and volume
fraction values was performed through a comparison of directly
measured and calculated temperature depth profiles.

II. MATERIALS

A. Preparation and processing

Fabrication of an Al2O3/Y-ZrO2 graded composite that has
both superior alumina properties (i.e., excellent hardness and wear
resistance) and zirconia characteristics (i.e., remarkable toughness
and strength) has been widely pursued for medical applications.2

There are several reports on the application of this family of graded
materials for the fabrication of hip or knee prostheses due to their
excellent biocompatibility.27,28 There exist various methods of
graded materials fabrication including both classical and modern
techniques such as the PM method,3–5 coating processes,2 centrifu-
gal casting,29,30 thermal spraying,31,32 plasma methods (spraying
and welding), etc. The most appropriate graded materials’ fabrica-
tion method can be chosen based on the material combination, the
type of the transition function, and the geometry of the desired
components.31 The transition function in a graded material deter-
mines a property gradient, which is usually the volume fraction of
the constituents as a function of one or more coordinates. Among
the aforementioned methods, the PM method enables the fabrica-
tion of materials with good control of chemical composition and
microstructure.33 Processing parameters such as temperature, time,
and pressure have a significant influence on the properties of the
graded materials produced using the PM method2 used in this
work because of its simplicity and the availability of the required
equipment. It involves the preparation of the mixture of powder
materials according to a predesigned dispersion formulation, stack-
ing, and finally sintering.34 α-Aluminum oxide (α-Al2O3) nanopow-
der (99.85%, 40 nm grain size, Inframat Advanced Materials, USA)
and commercial 5.3 wt. % (3mol. %) tetragonal yttria-stabilized
zirconia powder (TZ-3YB, from TOSOH, Japan) were used as the
raw materials. The TOSOH powder shapes were 100% tetragonal.
The theoretical density of the α-Al2O3 powder is 3.97 g/cm

3 and that
of the TZ-3YB powder is 6.05 g/cm3.
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A 4-layer sample with 5-mm thickness of each layer was
made. Figure 1 shows a schematic of the Y-ZrO2 and Al2O3 layer
composition in this sample. Figure 2 shows the flow chart of the
manufacturing process of the Al2O3/Y-ZrO2 sample. The powders
were compacted by uniaxial pressure without a binder. After
putting all the layer mixtures in the die (two centimeter diameter),
the powders were cold pressed at 70MPa for three minutes into a
disk-shaped specimen. Sintering of the green sample was done
according to the sintering schedule from TOSOH (heating at
100 °C/h, sintering at 1500 °C for 2 h, and natural cooling in a
furnace at 2 °C/min) in a Barnstead/Thermolyne model F46120CM
furnace. Several samples were fabricated and then examined for the
possible presence of deep cracks at the interfaces between layers.
This was done through irradiation with a low frequency modulated
laser beam incident normal to the surface of the upper layer and
the observation of the thermal-wave distribution from the side
surface using a 3–5 μm spectral band midinfrared (MIR) camera
(A6700sc, FLIR, USA). In the samples that were deeply cracked in
the depth direction, the thermal-wave profile decreased abruptly
behind the crack due to the large thermal impedance. The best
quality sample was thus selected for the studies reported in this
work.

B. Thermophysical properties of Al2O3/Y-ZrO2 layered
composites

To measure the effective thermophysical properties at any
point in the sample, the rule of mixture (ROM) homogenization
technique15,16 was employed. According to the ROM, widely used
for its simplicity,15 the effective properties at each point can be

calculated from the following expression:

p ¼ p1v1 þ p2v2, (1)

where v1 and v2 are the volume fractions of materials 1 and 2,
respectively, and p1 and p2 are the corresponding values of the
investigated property of each material. For transient heat conduc-
tion analysis of a graded material, one needs to know the density,
thermal conductivity, and specific heat of the constituents, i.e., the
pure sintered alumina and the pure sintered zirconia. As the actual
density is important for porosity measurements, pure samples from
each powder with 2 cm diameter and 4–6 mm thickness were fabri-
cated with the same sintering schedule as used for the nonhomoge-
neous sample. The density of each type of specimen was measured
using the Archimedes principle, with water as the immersion
medium. The actual densities of the pure Al2O3 and the pure
Y-ZrO2 sample were found to be 3.8 g/cm3 and 5.9 g/cm3, respec-
tively. The relation between density and porosity is given by

ε ¼ 1� ρa
ρs

� �
� 100, (2)

which allows the calculation of the porosity percent in the samples
from their measured and their theoretical densities.35 In Eq. (2),
ε is the porosity %, ρa is the actual density (with porosity), and ρs
is the theoretical density (without porosity). Porosities for the pure
Al2O3 and the pure Y-ZrO2 sample were found to be 2.47% and
4.28%, respectively. Therefore, both samples were considered to be

FIG. 2. Flow chart of the manufactur-
ing process.

FIG. 1. Layer sequence in the layered
composite sample.

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 127, 045110 (2020); doi: 10.1063/1.5116709 127, 045110-3

Published under license by AIP Publishing.

https://aip.scitation.org/journal/jap


fully dense. The low percent of porosity in the samples was further
confirmed by their optical transparency. It is known that only
extremely dense samples can transmit light well due to the fact that
pores are efficient light scatterers.36

Effective defining factors of thermal properties of sintered
samples include sintering schedule, porosity, microstructure,
grain size, purity, and composition.36–40 Therefore, the actual
values of these properties in sintered samples cannot be found in

the literature; they must be measured or reconstructed on a
case-by-case basis. For their determination, the temperature depen-
dent thermal conductivity and specific heat of sintered alumina
and sintered zirconia with similar, but not exactly the same, sinter-
ing parameters, were adopted from the literature.38,40–42

Temperature dependencies of the thermal conductivity and spe-
cific heat for high purity (min. 99.6% Al2O3) sintered alumina with
porosity 3%–6% and density 3.75–3.85 g/cm3 are given as follows:41

k(T)Al2O3
¼ 5:5þ 34:5� exp{�0:0033� (T � 273)} (in W=mK, 298� 1573K), (3a)

c(T)Al2O3
¼ 1:0446þ 1:742� 10�4 � T � 2:796� 104 � T�2 (in J=g K, 298� 1737K): (3b)

The thermal conductivity and specific heat of stabilized zirco-
nia have been the subject of numerous experimental
investigations.36,39,42–46 Schlichting et al. measured the thermal
conductivity of dense and porous yttria-stabilized zirconia (YSZ)
ceramics as a function of temperature in the range of 25–1000 °C.42

The most important factor in the thermal conductivity of YSZ is its
yttria content36,42,46 and microstructures.39 After performing a
polynomial curve fitting on the thermal conductivity measurements
of fully dense (porosity less than 6%) 3 mol. % YSZ,42 the following
relation was obtained:

k(T)ZrO2
¼ 2:2767þ 0:0056� T � 1:2621� 10�5 � T2 þ 9:9895

� 10�9T3 � 2:7527� 10�12 � T4 (W=mK): (4a)

The specific heat capacity of TZ-3YB was determined by
Taylor et al. using differential scanning calorimetry38 in an
Omnitherm DSC 1500 apparatus with sapphire as the baseline
standard. That study indicated that the specific heat is insensitive
to the microstructure. Polynomial fitting on the specific heat data38

was performed, and the following relation was obtained:

c(T)ZrO2
¼ 239:3402þ 1:052 69� T � 0:001 12� T2

þ 5:622 17� 10�7 � T3

� 1:07881� 10�10 � T4 (J kg�1 K�1):

(4b)

The calculation of the thermal conductivity and specific heat
of alumina and zirconia from Eqs. (3a) to (4b) at room tempera-
ture (25 °C) and at the maximum temperature during the experi-
ment according to Fig. 5 (32 °C) showed that the total
thermophysical parameter change with temperature during the
experiment was less than 1%. Consequently, the aforementioned
thermal property constant value hypothesis of the constituent mate-
rials was validated through the direct measurement and subsequently
used in the development of the theoretical inverse heat conduction
problem and the associated computational analysis of the experimen-
tal results.

III. EXPERIMENTAL AND RESULTS

A Cr layer (300 nm thick) was deposited on the surface of
the sample using an AJA International ATC Orion 5 Sputter
Deposition System to turn the transparent specimen surface
opaque. The specimen was polished to a 1-μm final finish using
routine ceramographic methods before sputtering. For measuring
the transient temperature in the sample, a CW 808 nm laser diode
(JOLD-30-CPXF-1L) beam was shone normal to the circular cross
section of the sample surface (Fig. 3). A uniform laser beam distri-
bution was employed for heating the front surface of the sample.
This was achieved by using a diffuser in front of the beam which
homogenized the exiting power. The collimated laser beam was
spread and homogenized by a microlens array with intensity varia-
tions <5% across that area. Therefore, constant laser intensity
impinged on the front surface, and a constant heat flux was
assumed in the numerical modeling. The MIR camera operating at
104 fps was used to capture the photothermal transient depth
profile. The MIR camera FLIR A6753sc was calibrated by FLIR
Systems, Inc., for measurements of relative temperature. A thermo-
couple was attached to the back end of the sample to measure the
initial temperature of the specimen at the beginning of all

FIG. 3. The thermographic setup. The collimated CW laser operated in the DC
(unmodulated) mode.
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measurements. Comparison of the measured temperature with a
thermocouple at the onset of measurements led to a MIR image
that shows a constant temperature along four layers with a devia-
tion of about 0.2 °C. Therefore, it was concluded that the emissivi-
ties of four layers were very close and increasing the sample
temperature by a few degrees during the laser irradiation experi-
ment was not expected to create considerable differences among
the emissivities of the four layers. The thermographic image pixel
dependencies were analyzed theoretically in order to extract the
temperature at each depth. Then, the measured temperature data in
combination with the calculated temperatures were used to deter-
mine the thermophysical properties such as thermal conductivity
and specific heat of the fabricated sample in the temperature range
of the experiment in an inverse problem analysis owing to the
coordinate dependence of the thermophysical properties and the
density. A two-stage inverse problem theory was developed which
further allowed the determination of volume fractions of the con-
stituent materials in the sample. The depth dependencies of the
thermophysical properties and the density were estimated using the
ROM homogenization technique. Although the proposed method
in this paper is used to identify the properties of layered samples,
for identification of the thermal properties in an FGM, one could
assume a nonlinear transition function for the FGM properties like
an exponential or power function and identify the parameters of
that function using an inverse analysis.

A layered sample with graded properties only in the depth
direction was tested under transient heating conditions, with the
direct current (DC) laser irradiating one surface of the specimen
while the other surfaces were exposed to the ambient with free
convection. The photothermal problem was modeled in 2D due to
the axial symmetry. Considering both convection and radiation
effects, the total heat convection coefficient is the summation of
the convection heat transfer coefficient (hc) and the effective
convection heat transfer coefficient for radiation (hr), which is
calculated from Eq. (5),47

hr ¼ σεr[(T þ T1)(T2 þ T2
1)]: (5)

In Eq. (5), σ ¼ 5:6703� 10�8 W=m2 K4 is the Stefan-
Boltzmann constant and εr is the surface emissivity. Also, T1 is
the ambient temperature, which was 25 °C. The total convection
heat transfer coefficient is the summation of both convection and
radiation effects: h ¼ hc þ hr . The convection heat transfer coeffi-
cient for the sample was calculated using the average diameter of
the sample (diameter = 16.5 mm); the initial surface temperature,
which was 26.6 °C; and the ambient temperature. The change in
the latter was small on the order of 6 °C; therefore, a constant hc
value was assumed and estimated to be hc = 7.6W/m2 K using the
equation of hc = Nuk/D, where Nu is the Nusselt number for a hori-
zontal cylinder in the laminar free convection conditions calculated
according to the Churchill and Chu formula,48 k is the thermal
conductivity for air, and D is the sample diameter. For calculation
of the effective convection heat transfer coefficient for radiation
(with the assumption of high emissivity surfaces), hr ¼ 6W=m2 K
is obtained. Therefore, the total convection heat transfer coefficient
is h ¼ 13:6W=m2 K, which is used in the calculations.

The experimental temperature depth profiles were measured
using the MIR camera with no embedded thermocouples and they
are plotted in Fig. 4 at various time instants. The trends of experi-
mental transient temperature depth distributions at each recorded
instant are similar, with temperatures increasing at longer times.
These depth profile similarities show that the effect of temperature
change on thermophysical properties during the heating process
was not considerable.

FIG. 4. Experimental temperature distribution in the sample along the depth at
y = 11.3 mm.

FIG. 5. Experimental temperature history for representative points in various
layers of the sample: (point 1) In the 1st layer at x = 1.9 mm, y = 11.3 mm;
(point 2) in the 2nd layer at x = 7.6 mm, y = 11.1 mm; (point 3) in the 3rd layer
at x = 12.5 mm, y = 10.7 mm; (point 4) in the 4th layer at x = 19.1 mm,
y = 10.9 mm.
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To examine the effect of powder layer composition on tem-
perature evolution, four points in four different layers were con-
sidered (Fig. 5). Figure 5 shows that the rate of temperature
change in the first layer, which is pure Y-ZrO2, is maximum while
the rate decreases with the increase of Al2O3 content in the
deeper layers. Also, the temperature of different layers of the
sample changed between 2 and 6 °C. Therefore, from this perspec-
tive, too, it is reasonable to expect that the thermal properties of
the sample did not change with temperature, consistently with the
results in Fig. 4. On the other hand, according to Fig. 4, at each
instant, there was approximately 3 °C temperature decrease from
the first to the fourth layer which was ∼50% of the total tempera-
ture change during the experiment. Therefore, at each moment,
there was a significant, measurable temperature change in the
sample and measurable temperature sensitivity with respect to
depth. As a consequence, the determination of the spatial depen-
dence of thermophysical properties in the sample was studied in
an inverse analysis presented in Sec. V. Determination of the
depth dependence of thermophysical properties can yield a better
understanding of layer parameters and their depth profiles as
feedback to graded sample fabrication/manufacturing and it
shows how the thermal behavior of this nonhomogeneous sample
changes with depth.

IV. THEORY OF LASER-INDUCED TEMPERATURE
DISTRIBUTION IN NONHOMOGENEOUS SOLIDS

A. The photothermally induced transient nonlinear
heat conduction boundary value problem

The governing equation of transient heat conduction in a ther-
mophysically nonhomogeneous solid can be written as

∇ � (k(x, T)∇T(x, T)) ¼ ρ(x, T)c(x, T)@T(x, T)=@t, (6)

where T is the temperature, ρ is the mass density, c is the specific
heat, and k is the thermal conductivity of the solid. The nonlinearity
in the present problem arises from the coordinate dependence of the
density and the thermophysical parameters k and c. The boundary
conditions are shown in Fig. 6. The Γ1 boundary was heated photo-
thermally with the DC laser generating constant heat flux. All other
boundaries were exposed to air with convection boundary conditions

and initial and boundary conditions as follows:

T(x, 0)¼T0(x) in the domainΩ,
�k(∇T(x, t) �n)¼ �q on the boundary with constant heat flux x[Γ1,
qc ¼ h(T�T1) on the boundaries with convection boundary

condition x[Γ2,

where n is the unit outward vector to the boundary, T0 is the initial
temperature, T1 is the ambient temperature distribution, h is the
total convection heat transfer coefficient, and �q is the applied heat
flux to the boundary Γ1.

In general, the material properties of graded media are space
and mostly temperature dependent. Consequently, the solution of the
transient heat transfer problem in such media is complicated, espe-
cially when the geometry of the domain is somewhat complex. Several
numerical methods have been used for the study of nonlinear transient
heat transfer in graded materials such as the finite element method
(FEM), the BEM, and also meshless methods (MMs). Because of the
highly mesh-dependent characteristics, the FEM has many inherent
shortcomings, especially in the re-meshing processes when the ele-
ments become highly distorted. This may be a serious disadvantage in
handling problems with large gradients, crack propagations, large
deformations, etc.15 The BEM method only requires information from
the nodes on the boundary instead of internal meshes, but the main
problem in applying the BEM in the case of nonhomogeneous materi-
als is finding the fundamental solution. Generally speaking, a single
fundamental solution is not available in transient nonlinear problems
for arbitrary material gradients. Meshless methods have shown many
advantages for handling such problems.15,16 Several MM versions have
also been proposed with different formulations.

Here, t-RPIM15,16 was used to solve the transient heat transfer
problem in the layered composite sample. The solution of the
problem via temperature predictions is aimed at yielding thermo-
physical or geometric layer parameters that will add insight into
the manufacture of samples, their thermal properties, and spatial
distributions. This problem is studied in this work through an
inverse analysis for finding the spatial distribution of constituent
materials in the layered sample. In the t-RPIM, the temperature
field is approximated without the need for a predefined mesh, and
the domain integrals are evaluated by the Cartesian transformation
method (CTM)49 to avoid the need for foreknowledge of the back-
ground cell structure. The domain integrals in the conventional
MMs are calculated using the Gaussian quadrature (GQ) method
with a background mesh, which is a time-consuming task.15 In
contrast, in the t-RPIM, the integrals are computed using the
CTM, which is a fast and accurate meshless integration technique.
Moreover, the applied t-RPIM has the ability to model all possible
thermal boundary conditions, including convection, radiation,
insulation, etc. Little attention has been paid to the heat conduction
process with radiation boundary conditions in FGMs while the role
of thermal radiation is important in high-temperature applica-
tions,50 especially those with temperatures higher than 600 °C. For
modeling a problem with radiative boundary conditions, it suffices
to define an effective convection heat transfer coefficient on bound-
aries with radiation as done in Eq. (5). Shape functions are impor-
tant components in meshless methods and are also used in the
t-RPIM method. This is an advantage of the t-RPIM since its shape

FIG. 6. Domain and boundary conditions of nonhomogeneous solids.
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functions possess the Kronecker delta function property, which
eliminates the need for special techniques to provide compliance
with the boundary conditions.15 Details of the numerical imple-
mentation of the t-RPIM are discussed in Appendix A.

V. TEMPERATURE MEASUREMENT AND THERMAL
PROPERTY DETERMINATION RESULTS AND
DISCUSSION

Laser intensity was measured to be 1.131 × 104W/m2. The
exact amount of absorbed laser power on the front surface could
not be measured directly as it depends on both absorption and
radiation coefficients. For the calculation of the amount of
absorbed laser power on the sample surface, one needs to find the
sample surface absorptivity defined as the ratio of the absorbed to
the incident radiant power at the surface. The problem of approxi-
mating absorptivity was approached by considering several values
for the absorptivity between 0 and 1 and comparing the calculated
temperature by t-RPIM with the measured one. In these calcula-
tions, the known volume fractions known from the sample fabrica-
tion and the literature values of thermal properties were used. Best
agreement between the measured and the calculated temperature
depth profiles was found for absorptivity equal to 0.20. Therefore,
in all calculations, the absorptivity was set equal to 0.20.

The measured temperature distribution of the layered sample
using thermography images obtained with the MIR camera was
introduced into MATLAB and the MATLAB program calculated
the contour of Fig. 7(a). No manipulation was done on the boun-
dary value temperatures. In Fig. 7(b), the same transient heat con-
duction problem was modeled using the t-RPIM with 527 nodes
and 2912 integration points in the spatial domain and 12 time
steps between 0 and 118 s. The obtained temperatures at the inte-
gration points in the t-RPIM were entered into Tecplot 360 soft-
ware, which can plot a depth profile using the field values at

scattered points. The temperature data were used to generate the
temperature depth profile. As this is the output of this software, no
further manipulation was done on the boundary temperature
values. Therefore, the association of colors with temperatures is
unique so they can reliably correspond to the actual measured tem-
perature range. This direct solution was implemented using the real
volume fraction values and the temperature dependent thermo-
physical property values of the constituent powders according to
Eqs. (3a)–(4b). Also, the thicknesses of the layers are known
according to the sample design. The agreement between the mea-
sured and calculated temperature depth profiles (Fig. 7) confirms
the ability of the applied t-RPIM to solve the direct transient non-
linear heat conduction problem in media with temperature depen-
dent thermal properties.

The transient thermographic data show the temperature distri-
bution along the depth in the sample [Fig. 7(a)]. Also, the tempera-
ture profile obtained from the t-RPIM is illustrated in Fig. 7(b).
The convection boundary condition both at the upper and at the
lower boundaries of the sample resulted in symmetric temperature
distributions along the y axis, which is physically acceptable since
there is an axial symmetry in the sample.

A major purpose for developing the t-RPIM theoretical
method to solve time-domain heat conduction problems is the
measurement of thermophysical properties of nonhomogeneous
solids and, if applicable, their depth dependence. This can be
accomplished by determining the thermophysical properties of
constituent materials and Al2O3 volume fractions in the various
layers of the sample through an inverse problem analysis.
According to the governing differential equation [Eq. (6)] for the
transient heat transfer problem in the time domain, it is apparent
that temperature is not a linear function of the unknown parame-
ters since the thermal properties of the sample change along the
depth. Therefore, this makes the inverse analysis nonlinear, and dif-
ficulty in identification occurs due to this nonlinear nature. In

FIG. 7. Comparison of (a) the measured and (b) the calculated temperature for the layered sample using thermal properties from the literature (t = 118 s).
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nonlinear inverse thermal problems, the path of convergence is not
known in advance. The identification procedure could be affected
due to the small values of the sensitivity coefficients, the correlation
between the sensitivity of temperature with respect to different
unknown parameters, uniqueness issues, measurement error, etc.
Discussion on each of these issues can be found in the literature on
inverse analysis.20,51,52 However, the main goal of this study was to
show experimentally the ability of t-RPIM to deal with transient
heat transfer in nonhomogeneous materials and to extract the
thermal parameters through an inverse analysis using actual experi-
mental data. With the values of thermal conductivity and specific
heat of the constituent materials taken as independent of tempera-
ture, the associated inverse problem was solved using the damped
Gauss-Newton method53,54 (Appendix B). In the first stage of the
inverse analysis, the following material properties constituted
the unknown parameters: Xp ¼ [kAl2O3 , cAl2O3 , kY-ZrO2 , cY-ZrO2 ]

T . It
should be mentioned that the volume fractions of the constituent
powders in each layer were known from the sample fabrication
stage and used in this inverse analysis. Also, the values of the
thermal properties found in the literature were used as the initial
guess value of the unknown thermal properties in this stage. After
identification of the unknown thermal parameters in the first stage,
the volume fractions in the four layers are identified in the second
stage of the inverse analysis. In this stage, the identified thermal
properties from the first stage are used as known parameters.
Additionally, the initial guess values for the volume fractions are
arbitrary. The identified volume fractions in this stage were used to
check the validity of the inverse problem in the reconstruction of
the volume fraction values. This inverse problem was solved using
five sampling points given in Table I.

In order to investigate the effect of the initial guess values on
the identified thermal properties in the first stage of the inverse

analysis, two different sets of initial values of thermal properties
were considered. The temperature distribution along the depth of
the sample was calculated using t-RPIM and was compared with
the measured temperature. A correction to the value of the
guessed parameters was thus made. This scheme was continued in
subsequent iterations until convergence in the values of the
unknown parameters was obtained. In the first case, the thermal
property mean values in the temperature range of the experiment
obtained from the literature [Eqs. (3a)–(4b)] were used as the
initial guess for the property calculation. The thermal properties
determined from this inverse analysis are given in Table II. In this
case, there is a high convergence rate, and, after 3 iterations, the
inverse problem converged. In the second case, the initial guess
values for the thermal properties were chosen to be half of the
reported values in the literature and convergence occurred after 7
iterations. The percentage of the differences between the identi-
fied thermal properties in these two cases is also shown in
Table II. It can be concluded that, while the initial guess in the
inverse analysis changed by 50%, the maximum change in the
identified thermal properties was only about 5%. Therefore, even
when the initial guesses are far from the actual values of the
unknown parameters, the proposed algorithm is capable of
obtaining acceptable estimates of the unknowns.

In the second stage of the inverse analysis, the thermal prop-
erties determined from the first inverse problem (case I) were
used as known parameters in the numerical calculation of the
temperature profile, while the volume fraction values in each layer
were assumed to be unknown, i.e., Xv ¼ [Xv1 , Xv2 , Xv3 , Xv4 ]

T ,
where Xvi (with i = 1,…,4) is the volume fraction of Al2O3 powder
in each sample layer. In this manner, the ability of the proposed
inverse algorithm to determine the distribution of the constituents
of the layered samples was assessed. The actual densities of pure
sintered Al2O3 and Y-ZrO2 samples were measured directly prior
to the calculations. This second inverse problem was solved using
the same sampling points (Table I), and the calculated volume
fraction values are also shown in Table II. Subsequently, after
the determination of Al2O3 powder volume fractions in each
layer, the effective thermophysical properties at each depth were
estimated using the ROM [Eq. (1)]. This nondestructive proce-
dure yielded geometric layer parameters that add significant
and unique insight into the topography of the manufactured
material layers, their thermal properties, spatial, and density
distributions.

TABLE II. The determined thermal property and volume fractions in the layered sample.

kAl2O3 (W=mK) cAl2O3 (J=kgK) kY-ZrO2 (W=mK) cY-ZrO2 (J=kgK)

Thermal properties from literature38,40–42 32.67–36.96 766.4–785.2 3.07 470.2
Initial guess of case I 32.67 766.4 3.07 470
Determined thermal properties in case I 26.39 ± 0.31 766.4 ± 33 3.32 ± 0.05 589.87 ± 28
Initial guess of case II 16.8 383.2 1.5 235
Determined thermal properties in case II 26.01 ± 0.42 743.20 ± 48 3.14 ± 0.06 569.85 ± 29
Percent of difference between the results of two cases 1.5% 3% 5.4% 3.4%
Al2O3 volume fractions as fabricated 0% 25% 50% 75%
Determined volume fractions 0.01% ± 0.006% 29.4% ± 0.7% 45.32% ± 1.2% 73.74% ± 0.7%

TABLE I. Sampling point coordinates.

Sampling points x (mm) y (mm)

P1 19.08 11.30
P2 2.72 11.27
P3 7.65 11.02
P4 12.44 10.75
P5 14.79 10.63
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Due to the fact that nonlinear inverse thermal problems are
ill-conditioned, measurement errors can have a significant effect on
the outcome of the inverse analysis. In general, experimental mea-
surements should be accurate enough to have a maximum of 2%
error.20,51,52 By applying suitable techniques in the inverse analysis,
the ill-conditioned problems could be solved.18,24,55–61 In this
study, the Moore-Penrose pseudoinverse technique is used for the
calculation of inverse matrices with very small determinant.

Finally, to validate the results of the inverse problem, the
reconstructed temperature depth profile using the determined
thermal properties from the first stage of the inverse analysis (case
I) and the determined volume fractions from the second stage is
compared with the measured temperature depth profile in Fig. 8 at
the time instant of t = 39.33 s. The very good agreements between
the experimental thermographic and theoretical/computational
results in Table II and Fig. 8 demonstrate the effectiveness of the
t-RPIM method as a powerful tool to analyze transient temperature
responses in nonhomogeneous materials. As shown in Fig. 8,

temperature measurements have a variance between the maximum
and the minimum values. These values were used in the inverse
algorithm, and the corresponding unknown parameters were iden-
tified using each set of measured temperatures. Figure 8 shows the
calculated temperatures corresponding to the identified parameters,
along with their variances calculated with values shown in Table II.

Additionally, the transient temperature profile, calculated
using the determined thermal properties at location x = 2.7 mm
and y = 11.3 mm of the layered sample, is plotted in Fig. 9. The
maximum and average differences between measured and calcu-
lated temperature for this coordinate point for all instants in its
temperature history (Fig. 9) is 0.95% and 0.53%, respectively, which
confirms that the applied t-RPIM can also follow the evolution of
temperature with time using the transient heat conduction theory
in layered solids with good accuracy.

VI. CONCLUSIONS

The expressed goal of this work was the extraction of thermo-
physical properties and density volume fractions as a function of
depth in nonhomogeneous solids fabricated using the PM method.
Thermography-based temperature imaging and measurement of a
graded material were performed and a theoretical model resulting
in the numerical solution of the associated heat conduction
problem with convection boundary conditions was developed. The
combination of the t-RPIM technique and the developed numerical
method was applied to the reconstruction of the thermophysical
and geometric layer parameters from the temperature data that can
then be used in the manufacturing of nonhomogeneous materials
and/or SHM applications.

In the first step, the direct analysis of the problem with known
thermophysical properties and spatial distribution was performed
to calculate the transient temperature distribution. Comparison of
the experimental and theoretical/numerical temperature profiles
confirmed the success of the presented methodology in dealing
with nonlinear transient heat conduction problems.

In view of the fact that the exact values of the thermal proper-
ties in the layered sample made with the PM method were
unknown, the determination of the depth dependence of these
properties was made by means of a two-stage inverse analysis using
the damped Gauss-Newton method. The temperature depth profile
in the layered sample, calculated from the determined thermal
properties and density volume fractions, was compared with the
measured temperature depth profile using thermography and good
agreement was found down to 15 mm from the surface.

Many factors can affect the properties of the material manu-
factured using the PM method, including powder dispersion in the
layers, cracks or voids in the final sample, inclusions, nonuniform
density due to variable pressure distribution, time, and temperature
during the sintering process, etc. Therefore, this process can result
in uncertainty in the manufacturing process of quality control and
variation from sample to sample. Besides the intrinsic mathematical
interest in the development of the thermal inverse problem meth-
odology, its combination with nondestructive MIR thermography
was shown to be a powerful analytical method for estimating multi-
ple material parameters central to the assessment of the quality of
graded materials.

FIG. 8. Comparison of the measured and reconstructed temperature depth
profiles using the identified properties.

FIG. 9. Temperature evolution for the layered sample at x = 2.7 mm and
y = 11.3 mm.
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APPENDIX A: TRULY MESHLESS RADIAL POINT
INTERPOLATION METHOD (t-RPIM)

1. The RPIM shape functions

Approximate solutions of the differential equation for nonlin-
ear heat conduction in solids can be found if the field variable
(temperature) is approximated using shape functions in a local
support domain. This is possible because in the interpolation
process, the information from local nodes around a desired point is
sufficient for the construction of the approximate function at that
point, and the information from far away nodes is not required.
The shape of the support domain is arbitrary and most often is cir-
cular in 2D problems. The value of the field variable at a point is
calculated according to the following equation:

u(~X) ¼
Xn

i¼1
uiwi(xj, yj) ¼ {~w}T{us

!}, (A1)

where wi(xj, yj) is the shape function of the ith node at point
~X ¼ (xj, yj). n is the number of nodes in the supporting domain and
ui is the value of the field variable at the nodal points. The value of
the shape function for nodes outside the supporting domain is zero.

The accuracy of the interpolation at each point, among other
factors, depends on the shape and size of the support domain.16

In this work, the method of Liu and Gu62 was used to determine
the dimensions of the support domain. The domain size was deter-
mined by ds ¼ αsdc, where αs is a constant, usually between
(1.5 and 3), and dc is the average nodal spacing in the domain. A
simple relation for obtaining the average nodal spacing is given by
Liu and Gu.62 The transient temperature in the nonhomogeneous
domain is a function of both time and space, T(~X, t). Therefore,
the unknown temperature field in the space and time domain is
approximated using RPIM, both polynomial and radial basis func-
tions (RBFs),63,64 as follows:

T(~X, t) ¼
Xn

i¼1
Ri(~X)ai(t)þ

Xm

k¼1
Pk(~X)bk(t), (A2a)

where n is the number of nodes in the domain of point (~X) and m
is the number of monomial basis functions. Linear basis functions
with m = 3 were used for the sake of simplicity, i.e.,

PT (~X) ¼ [1, xj, yj]: (A2b)

The conventional RBFs used in the RPIM are listed
elsewhere.15,16,63–65 In the present study, the thin plate spline (TPS)

function was employed for the construction of the shape functions
so that Ri ¼ rηi , where ri is the Euclidian distance between point
~X ¼ (xj, yj) and the ith node of the domain. A value of 3.001 was
used for η according to Liu and Gu.62 Finally, the TPS function
was written as

Ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(xj � xi)

2 þ (yj � yi)
2

q� �η

: (A2c)

The n +m unknown coefficients [ai(t), bk(t)] in Eq. (A2a) can
be calculated by imposing the Kronecker delta function property
and some other constraint equations. The Kronecker function
property is satisfied as

u(~Xi) ¼ ui, (A3)

where ~Xi ¼ (xi, yi) is the coordinate of node i in the domain and ui
is the temperature at node i. This leads to a system of n equations
which in matrix form can be written as

ui ¼ R0aþ Pmb, (A4a)

where uTi ¼ {u1, u2, . . . , un}, in which ( )T denotes the transpose
of a vector or a matrix, and R0 is the moment matrix of the RBFs,

R0 ¼

R1(r1) R2(r1)
R1(r2) R2(r2)

� � �
� � �

Rn(r1)
Rn(r2)

..

. ..
. . .

. ..
.

R1(rn) R2(rn) � � � Rn(rn)

2
66664

3
77775: (A4b)

Furthermore, constraint conditions should be satisfied by coef-
ficients ai in Eq. (A2a). These constraints will give the extra m
equations required for determining the n +m unknown coeffi-
cients. These constraint equations are necessary to ensure that the
coefficients are obtained uniquely,15,16

Xn

i¼1
Pj(~Xi)ai(t) ¼ PT

ma ¼ 0 for j ¼ 1, 2, . . . , m: (A5a)

Also, the polynomial moment matrix is written as

PT
m ¼

1 1
x1 x2
y1 y2

� � �
� � �
� � �

1
xn
yn

..

. ..
. . .

. ..
.

pm(x1) pm(x2) � � � pm(xn)

2
6666664

3
7777775
: (A5b)

Combining Eqs. (A4a) and (A5a) gives a system of n +m
equations in the unknowns which can be expressed in a matrix
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form as follows:

ui
0

� �
¼ G

a
b

� �
, (A6a)

where G is the moment matrix,

G ¼ R0 Pm

PT
m 0

� �
: (A6b)

Finally, after some arithmetic manipulations, the approximate
filed temperature function can be expressed in the following form:

T(~X, t) ¼
Xn

i¼1
wi(xj, yj)Ti(t) ¼ wT(x)T(t), (A7a)

where T is a vector containing nodal temperature values and wT is
the shape function vector containing the first n components of the
following vector:

~w ¼ [RTPT]G�1: (A7b)

The formalism for the shape functions calculation in the
t-RPIM can now be used in the solution of the inverse heat con-
duction problem.

2. Mathematical formulation of the nonlinear problem

The Galerkin weak formulation of the nonlinear heat conduc-
tion equation [Eq. (5)] is written by considering the RPIM shape
functions as weighting functions66

ð
Ω
wi[∇ � (k(x, T)∇T)� ρ(x, T)c(x, T) _T]dΩ

�
ð
Γ2

wi[h(T � T1)]dΓ2 ¼ 0, (A8a)

where wi is the RPIM shape function corresponding to node i
[Eq. (A7b)]. Performing integration by parts on the first term of
Eq. (A8a), the following relation is obtained:

�
ð
Ω
{∇wi � [(k(x, T)∇T)]þ wiρ(x, T)c(x, T) _T}dΩ

þ
ð
Γ1

{wi[(k(x, T)∇T)] � n}dΓ1 �
ð
Γ2

wi[h(T � T1)]dΓ2 ¼ 0 :

(A8b)

Given that [(k(x, T)∇T)] � n ¼ �q, substituting Eq. (A7a) into
Eq. (A8b) yields

�
ð
Ω
k(x, T)

@wi

@x

@wj

@x
þ @wi

@y

@wj

@y

� �
Ti(t)dΩ

�
ð
Ω
ρ(x, T)c(x, T)wiw j

@Ti

@t
dΩ�

ð
Γ1

q(x, t)wi dΓ1

�
ð
Γ2

[hwiwjTi(t)� hT1wi]dΓ2 ¼ 0: (A8c)

The following system of equations is then obtained from
Eq. (A8c):

[M]{ _T}þ [K(T)]{T} ¼ {F(t, T)}, (A8d)

where

Mij ¼
ð
Ω
ρ(x, T)c(x, T)wiwj dΩ, (A8e)

Kij ¼
ð
Ω
k(x, T)

@wi

@x

@wj

@x
þ @wi

@y

@wj

@y

� �
dΩþ

ð
Γ2

h wiwj dΓ2, (A8f)

Fi ¼ �
ð
Γ1

�qwi dΓ1 þ
ð
Γ2

hT1wi dΓ2: (A8g)

In Eq. (A8d), {T} is the nodal temperature vector, [M] is the
so-called thermal mass matrix, [K(T)] is the thermal stiffness
matrix, and {F(t, T)} is the forcing matrix. Since each node in a
heat transfer problem has one degree of freedom, the dimensions
of {T} and {F(t, T)} are n� 1 and the dimensions of
[M]and [K(T)] matrices are n� n.

The matrix equation (A8d) represents a set of ordinary
differential equations involving unknown nodal temperatures and
their derivative with respect to time. In order to discretize the
temperature in the time-domain, the Crank-Nicolson scheme67 was
utilized in the following form:

1
2
{ _T}s þ

1
2
{ _T}sþ1 ¼

{T}sþ1 � {T}s
2

þ O(Δt)2: (A9)

This equation holds for the times between the steps s and
s + 1. Applying Eq. (A9) to Eq. (A8d), the following set of algebraic
equations is obtained:

{T}sþ1 ¼ [K̂sþ1]
�1
(�KsTs þ F̂s,sþ1), (A10a)

K̂sþ1 ¼ Msþ1 þ 1
2
Δtsþ1Ksþ1, (A10b)

�Ks ¼ Msþ1 � 1
2
Δtsþ1Ks, (A10c)

F̂s,sþ1 ¼ 1
2
Δtsþ1[Fs þ Fsþ1]: (A10d)

Since the material properties are functions of temperature,
the problem is solved using an iterative method at each time step.
Initially, the mass, stiffness, and forcing matrices are calculated
using the temperature distribution in the previous time step and
are then updated accordingly. The process is repeated until the
solution converges within a predefined tolerance value.

At each time step of the transient problem analysis, domain
integrals in Eqs. (A8e) and (A8f ) must be evaluated.15 Applying
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an efficient method for the evaluation of these integrals plays a
significant role in the overall efficiency of the mesh-free method.
The CTM has the capability of evaluating domain integrals with
higher accuracy and efficiency in comparison with the conven-
tional integration methods such as the Gaussian quadrature
method,15 which is traditionally used in mesh-free approaches.
This technique is especially designed for the fast and accurate
evaluation of the domain integrals with different integrands over
a single domain.16 A description of the CTM method can be
found elsewhere.15,16,49 Here, we consider a regular integral in a
2D domain

I ¼
ð
Ω
h(x, y) dΩ, (A11)

in which h(x, y) is an arbitrary function and Ω represents the
integration domain as depicted in Fig. 6. According to the CTM,
the integral of Eq. (A11) can be worked out as follows:

I ¼
XN

i¼1
W2D(xi)h(xi) ¼ W2D �H, (A12)

in which N is the number of integration points of the CTM and
W2D(xi) is the integration weight corresponding to the ith integra-
tion point at xi. It is the fact that all the integral transformations
are carried out in the Cartesian coordinate system that has given
the method the name CTM.49

3. Numerical implementation of the Cartesian
transformation method

According to Eqs. (A8e) and (A8f), the mass and stiffness
matrices can be determined by evaluating domain integrals. The
CTM equation (A12) can be applied for the calculation of these
integrals. The boundary integrals in the forcing vector and the stiff-
ness matrix were calculated using the GQ method, so that the
domain integrals of Eqs. (A8e) and (A8g) reduce to the CTM
forms,

Mij ¼
XN

p¼1
W2D

p (Rp � Cp � Spi � Spj), (A13a)

Kij ¼
XN

p¼1
W2D

p [Ap(S
x
pi � Sxpj þ Sypi � Sypj)]

þ
XG2

p¼1
WGQ

p (h� Spi � Spj ), (A13b)

Fi ¼ �
XG1

p¼1
WGQ

p (�q� Spi)þ
XG2

p¼1
WGQ

p (h� T1 � Spi ),

(A13c)

where N is the number of CTM integration points in the domain,
G1 is the number of Gaussian integration points on the boundary
segment Γ1, and G2 is the number of Gaussian integration points
on the boundary segment Γ2. W2D

p in each integral is the CTM
integration weight and WGQ

p is the Gaussian integration weight.
Other vectors and matrices in Eqs. (A13a)–(A13c) are defined as

follows:

{R}¼

ρ(x1, T)
ρ(x2, T)

..

.

ρ(xN , T)

8>>>><
>>>>:

9>>>>=
>>>>;
, {A}¼

k(x1, T)
k(x2, T)

..

.

k(xN , T)

8>>><
>>>:

9>>>=
>>>;
, {C}¼

c(x1, T)
c(x2, T)

..

.

c(xN , T)

8>>><
>>>:

9>>>=
>>>;
,

(A13d)

S ¼

w1(x1) w1(x2)
w2(x1) w2(x2)

� � �
� � �

w1(xN )
w2(xN )

..

. ..
. . .

. ..
.

wn(x1) wn(x2) � � � wn(xN )

2
66664

3
77775, (A13e)

Sx ¼

@w1(x1)
@x

@w1(x2)
@x

@w2(x1)
@x

@w2(x2)
@x

� � �
� � �

@w1(xN )
@x

@w2(xN )
@x

..

. ..
. . .

. ..
.

@wn(x1)
@x

@wn(x2)
@x

� � � @wn(xN )
@x

2
66666666664

3
77777777775
, (A13f)

Sy ¼

@w1(x1)
@y

@w1(x2)
@y

@w2(x1)
@y

@w2(x2)
@y

� � �
� � �

@w1(xN )
@y

@w2(xN )
@y

..

. ..
. . .

. ..
.

@wn(x1)
@y

@wn(x2)
@y

� � � @wn(xN )
@y

2
666666666664

3
777777777775

: (A13g)

APPENDIX B: THE INVERSE DAMPED GAUSS-NEWTON
ALGORITHM

The discussed inverse problem in this work was approached
using the damped Gauss-Newton method53,54 due to its good con-
vergence rate. The problem of Al2O3 volume fraction determination
in the layered sample was treated using four layers. According to
the design of the layered sample (Fig. 1), the vector of volume frac-
tions for the Al2O3 powder in layers 1–4 can be expressed as
Xv ¼ [0, 25%, 50%, 75%]T . In each layer, there are two constitu-
ent powders: Al2O3 and Y-ZrO2. Therefore, in Eq. (1), it was
assumed that v1 corresponds to the Al2O3 volume fraction and v2
to the Y-ZrO2 volume fraction at each point: v2 ¼ 1� v1, so that
the volume fraction of each powder could be found by determining
the Al2O3 volume fraction at each layer. To determine the four
unknown volume fractions in the four layers, the temperature
values were given at a few sampling points. These additional data
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can be expressed as

Txi ¼ �Tixi [ Γp, i ¼ 1, 2, . . . , I, (B1)

where �Ti are measured temperature values obtained by direct mea-
surement using the MIR camera. Γp is the y coordinate location
where the measurement was made. The vector of unknowns can be

expressed as

Xv ¼ [Xv1 , Xv2 , Xv3 , Xv4 ]
T , (B2)

where Xvj ( j = 1,2,…,4) are the unknown volume fractions of Al2O3

in layers 1–4. Temperature measurements at the sampling points
were made in 12 time steps and the vector of measurement data
was expressed as

�T ¼ �Tx1,t1 , �Tx1,t2 , . . . , �Tx1,t12 , �Tx2,t1 , . . . , �Tx2,t12 , �Tx3,t1 , . . . , �Tx3,t12 , �Txp ,t1 , . . . . . . , �Txp ,t12

� �T
, (B3)

where p is the number of sampling points used in the inverse analysis. In each step of the inverse analysis, based on the estimated volume
fractions, temperatures at the sampling points were calculated directly and their values were expressed as

T ¼ Tx1,t1 , Tx1,t2 , . . . , Tx1,t12 , Tx2,t1 , . . . , Tx2,t12 , Tx3,t1 , . . . , Tx3,t12 , Txp ,t1 , . . . , Txp ,t12

� �T
: (B4)

For the inverse analysis, an objective function was defined in
terms of the summation of squares of the differences between the
measured and the computed temperatures at sampling points, and
subsequently minimized, leading to the calculation of the vector of
unknowns

f (Xv) ¼ [�T � T(Xv)]
T [�T � T(Xv)]: (B5)

Among several optimization methods that can be used to find
the unknown vector Xv , the damped Gauss-Newton method53,54

was selected and the vector of unknowns was found using an
iterative equation,

X(kþ1)
v ¼ X(k)

v þ γ(k)D(k), (B6)

where (k + 1) and (k) indicate the iteration number, D(k) is the
search direction, and γ(k) is the step length. γ(k) ¼ 1 was used as
the first iteration of each step.53,54 For this choice, γ(k) increases the
cost function, i.e., f (Xv)

(kþ1) . f (Xv)
(k), and the iteration was

repeated with γ(k)=2: The search direction, D(k), can be found using
the following equation:

D(k) ¼ P(k))
T
P(k)

h i�1
(P(k))

T
(�T � T(Xv)

h i
, (B7)

where P is the global sensitivity matrix. The sensitivity matrix for
the ith sampling point was defined as

Pi ¼

P1
i,1 P2

i,1
P1
i,2 P2

i,2

� � �
� � �

Pj
i,1

Pj
i,2

..

. ..
. . .

. ..
.

P1
i,t P2

i,t � � � Pj
i,t

2
6666664

3
7777775
, (B8)

where

Pj
i,t ¼

@Txi ,t

@Xvj
¼

Txi ,t jXvjþεd � Txi ,t jXvj

εd
, j ¼ 1, 2, . . . , 4,

t ¼ 1, 2, . . . :, 12, i ¼ 1, 2, . . . , p:

(B9)

Txi ,tjXvjþεd is the value of the temperature at the ith sampling
point and at the tth time step, while the jth component of the
volume fraction vector (Xvj ) is increased to Xvj þ εd . The value of
εd ¼ 0:05Xvj at each step was used. The global sensitivity matrix is
given by

P ¼

P1
P2

..

.

Pp

2
6664

3
7775 (B10)

To determine all the components of the global sensitivity
matrix, in each step of the solution one needs to evaluate Txi ,t jXvjþεd
for j ¼ 1, 2, . . . , 4, that is, the direct problem corresponding to the
experiment must be solved four times. The convergence criterion
of the inverse problem is defined as follows:

X(kþ1)
v � X(k)

v , e, (B11)

where e is the desired tolerance to which the unknowns are
calculated.
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