Publications: Photovoltaic Solar Cell Diagnostic Techniques, Imaging and NDE

Photovoltaic Solar Cell Diagnostic Techniques, Imaging and NDE

  1. Advanced characterization methods of carrier transport in quantum dot photovoltaic solar cells
    L. Hu and A. Mandelis, “Advanced characterization methods of carrier transport in quantum dot photovoltaic solar cells”, J. Appl. Phys. 129, 091101 (30 pages) (2 March 2021), https://doi.org/10.1063/5.0029440 - PDF
  2. Lock-in carrierography non-destructive imaging of silicon wafers and silicon solar cells
    P. Song, F. Yang., J-Y Liu, and A. Mandelis, “Lock-in carrierography non-destructive imaging of silicon wafers and silicon solar cells”, J. Appl. Phys. 128, 180903 (12 pages) (9 November 2020) https://doi.org/10.1063/5.0022852 - PDF
  3. Controlled Steric Hindrance Enables Efficient Ligand Exchange for Stable, Infrared-Bandgap Quantum Dot Inks
    M. Liu, F. Che, B. Sun, O. Voznyy, A. Proppe, R. Munir, M. Wei, R. Quintero-Bermudez, L. Hu, S. Hoogland, A. Mandelis, A. Amassian, S. O. Kelley, F. P. García de Arquer, and E. H. Sargent, “Controlled Steric Hindrance Enables Efficient Ligand Exchange for Stable, Infrared-Bandgap Quantum Dot Inks”, ACS Energy Letters 4, 1225 - 1230 (2019) DOI: 10.1021/acsenergylett.9b00388 - PDF
  4. Quantitative Ultrahigh-Frequency Heterodyne Lock-in Carrierography Multi-Imaging of Colloidal Quantum Dot Solar Cells
    L. Hu, A. Mandelis, and Q. Sun, “Quantitative Ultrahigh-Frequency Heterodyne Lock-in Carrierography Multi-Imaging of Colloidal Quantum Dot Solar Cells”, IEEE J. Photovoltaics 9 (1), 132 – 138 (January 2019). - PDF
  5. Colloidal Quantum Dot Solar Cell Electrical Parameter Non-Destructive Quantitative Imaging Using High-frequency Heterodyne Lock-in Carrierography and Photocarrier Radiometry
    L. Hu, M. Liu, A. Mandelis, Q. Sun, A. Melnikov, and E. H. Sargent, “Colloidal Quantum Dot Solar Cell Electrical Parameter Non-Destructive Quantitative Imaging Using High-frequency Heterodyne Lock-in Carrierography and Photocarrier Radiometry”, Solar Energy Materials Solar Cells 174, 405 – 411 (2018). - PDF
  6. Colloidal Quantum Dot Solar Cell Power Conversion Efficiency Optimization using Analysis of Current-Voltage Characteristics and Electrode Contact Imaging by Lock-in Carrierography
    L. Hu, M. Liu, A. Mandelis, A. Melnikov, and E. H. Sargent, “Colloidal Quantum Dot Solar Cell Power Conversion Efficiency Optimization using Analysis of Current-Voltage Characteristics and Electrode Contact Imaging by Lock-in Carrierography”, Progress in Photovoltaics 25, 1034 – 1050 (2017) DOI: 10.1002/pip/2920 - PDF
  7. Temperature-and Ligand-Dependent Carrier Transport Dynamics in Photovoltaic PbS Colloidal Quantum Dot Thin Films Using Diffusion-Wave Methods
    L. Hu, A. Mandelis, Z.Y. Yang, X. Guo, X. Lan, M. Liu, G. Walters, A. Melnikov, and E. H. Sargent, “Temperature-and Ligand-Dependent Carrier Transport Dynamics in Photovoltaic PbS Colloidal Quantum Dot Thin Films Using Diffusion-Wave Methods” Solar Energy Materials Solar Cells 164,135 – 145 (February 2017) - PDF
  8. Study of Exciton Hopping Transport in PbS Colloidal Quantum Dot Thin Films Using Frequency- and Temperature-Scanned Photocarrier Radiometry
    L. Hu, A. Mandelis, A. Melnikov, X. Lan, S. Hoogland and E. H. Sargent, “Study of Exciton Hopping Transport in PbS Colloidal Quantum Dot Thin Films Using Frequency- and Temperature-Scanned Photocarrier Radiometry”, Int. J. Thermophys. 38 (7) (2017) DOI: 10.1007/s10765-016-2143 - PDF
  9. Imbalanced Hole Mobility and Schottky Junction Induced Anomalous Current-Voltage Characteristics of Excitonic PbS Colloidal Quantum Dot Solar Cells
    L. Hu, A. Mandelis, X. Lan, A. Melnikov, S. Hoogland, and E. H.Sargent, “Imbalanced Hole Mobility and Schottky Junction Induced Anomalous Current-Voltage Characteristics of Excitonic PbS Colloidal Quantum Dot Solar Cells”, Solar Energy Materials Solar Cells 155, 155-165 (2016) http://dx.doi.org/10.1016/j.solmat.2016.06.012 - PDF
  10. Quantitative Measurements of Exciton Hopping Transport Properties in Depleted-Heterojunction PbS Colloidal Quantum Dot Solar Cells from Temperature Dependent Current-Voltage Characteristics
    A. Mandelis, L. Hu and J. Wang, “Quantitative Measurements of Exciton Hopping Transport Properties in Depleted-Heterojunction PbS Colloidal Quantum Dot Solar Cells from Temperature Dependent Current-Voltage Characteristics”, Royal Soc. Chem. Advances 6, 93180–93194 (2016). - PDF
  11. Quantitative Analysis of Trap-State-Mediated Exciton Transport in Perovskite Shelled PbS Quantum Dot Thin films Using Photocarrier Diffusion-Wave Non-Destructive Evaluation and Imaging
    L. Hu, Z. Yang, A. Mandelis, A. Melnikov, X. Lan, G. Walters, S. Hoogland and E. H. Sargent, “Quantitative Analysis of Trap-State-Mediated Exciton Transport in Perovskite Shelled PbS Quantum Dot Thin films Using Photocarrier Diffusion-Wave Non-Destructive Evaluation and Imaging”, J. Phys. Chem. C 120, 14416 – 14427 (June 22, 2016). DOI: 10.1021/acs.jpcc.6b04468 - PDF
  12. Quantitative Carrier Density Wave Imaging in Silicon Solar Cells Using Photocarrier Radiometry and Lock-in Carrierography
    Q. M. Sun, A. Melnikov, A. Mandelis “Quantitative Carrier Density Wave Imaging in Silicon Solar Cells Using Photocarrier Radiometry and Lock-in Carrierography”, Int. J. Thermophys. 37(45), 1-9 (April 2016) DOI: 10.1007/s10765-016-2054-0 - PDF
  13. UV Laser Photocarrier Radiometry of c-Silicon with Surface Thin Hydrogenated Amorphous Si Film
    A. Melnikov, A. Mandelis, B. Halliop, and N.P. Kherani, "UV Laser Photocarrier Radiometry of c-Silicon with Surface Thin Hydrogenated Amorphous Si Film", Int. J. Thermophys. 36 (5-6), 1037-1044 (May-June 2015) DOI: DOI 10.1007/s10765-015-1835-1 - PDF
  14. Optoelectronic transport properties in amorphous/crystalline silicon solar cell heterojunctions using frequency-domain photocarrier radiometry: Multi-parameter measurement reliability and precision studies
    Y. Zhang, A. Melnikov, A. Mandelis, B. Halliop, N. P. Kherani and R. Zhu, "Optoelectronic transport properties in amorphous/crystalline silicon solar cell heterojunctions using frequency-domain photocarrier radiometry: Multi-parameter measurement reliability and precision studies", Rev. Sci.Instrum. 86, 033901 (8 pages) (March 2015). - PDF
  15. Non-Contact Determination of Local Efficiency of mc-Si Solar Cells Using Quantitative Lock-in Thermographic and Carrierographic (Photoluminescence) Imaging
    J-Y. Liu, A. Melnikov, and A. Mandelis, "Non-Contact Determination of Local Efficiency of mc-Si Solar Cells Using Quantitative Lock-in Thermographic and Carrierographic (Photoluminescence) Imaging", Int. J. Thermophys. 36 (5-6), 987-996 (May-June 2015) DOI 10.1007/s10765-014-1786-y - PDF
  16. Silicon solar cell electrical parameter measurements through quantitative lock-in carrierographic (photoluminescence) and thermographic imaging
    J-Y. Liu, A. Melnikov, and A. Mandelis, "Silicon solar cell electrical parameter measurements through quantitative lock-in carrierographic (photoluminescence) and thermographic imaging", Phys. Stat. Sol. A 210, No. 10, 2135 - 2145 (2013) / DOI 10.1002/pssa.201329206 - PDF
  17. Contactless measurement of electrical parameters and estimation of current-voltage characteristics of Si solar cells using the illumination intensity dependence of lock-in carrierography (photoluminescence) images
    J-Y Liu, A. Melnikov, and A. Mandelis, "Contactless measurement of electrical parameters and estimation of current-voltage characteristics of Si solar cells using the illumination intensity dependence of lock-in carrierography (photoluminescence) images", J. Appl. Phys. 114, 104509 (6 pages), (September 2013) - PDF
  18. Statistical theory and applications of lock-in carrierographic image pixel brightness dependence on multi-crystalline Si solar cell efficiency and photovoltage
    A. Mandelis, Y. Zhang and A. Melnikov, "Statistical theory and applications of lock-in carrierographic image pixel brightness dependence on multi-crystalline Si solar cell efficiency and photovoltage", J. Appl. Phys. 112, 054505 (1 – 13) (2012), doi: 10.1063/1.4749413. - PDF
  19. Infrared lock-in carrierography (Photocarrier radiometric imaging) of Si solar cells
    A. Melnikov, A. Mandelis, J. Tolev, P. Chen and S. Huq, "Infrared lock-in carrierography (Photocarrier radiometric imaging) of Si solar cells" (J. Appl. Phys. 107, 114513 (1 – 11), 2010. - PDF
  20. Optoelectronic transport property measurements of an amorphous silicon passivated c-silicon wafer using non-contacting methodologies
    A. Melnikov, B. Halliop, A. Mandelis and N. P. Kherani, "Optoelectronic transport property measurements of an amorphous silicon passivated c-silicon wafer using non-contacting methodologies", Thin Solid Films 520 (16), 5309–5313 (1 June 2012). - PDF
  21. Non-destructive infrared optoelectronic lock-in carrierography of mc-Si solar cells
    A. Mandelis, A. Melnikov, J. Tolev, J. Xia, S. Haq, and E. Lioudakis, "Non-destructive infrared optoelectronic lock-in carrierography of mc-Si solar cells, Quant. Infra Red Thermogr. (QIRT) J. 7 (1) 35 – 54 (2010). - PDF
  22. Lock-in and heterodyne carrierographic imaging characterization of industrial multicrystalline silicon solar cells
    A. Melnikov, P. Chen, Y. Zhang, and A. Mandelis, "Lock-in and heterodyne carrierographic imaging characterization of industrial multicrystalline silicon solar cells", Int. J. Thermophys. 33 (10-11) 2095-2102 DOI 10.1007/s10765-012-1292-z (November 2012). - PDF