Publications: Photothermal Depth Profilometry, Imaging and Inverse Problems

Photothermal Depth Profilometry, Imaging and Inverse Problems

  1. Study on in-plane thermal conduction of woven carbon fiber reinforced polymer by infrared thermography
    E. Wu, Q. Gao, M.Li, Y.Shi and A. Mandelis, “Study on in-plane thermal conduction of woven carbon fiber reinforced polymer by infrared thermography”, NDT & E Internationa 94, 56-61 (March 2018) https://doi.org/10.1016/j.ndteint.2017.11.007. - PDF
  2. Influence on Photothermal Radiometry of Carbon Fiber Reinfored Polymers
    E. Wu, Z. Xu, X. Guo and A. Mandelis, “Influence on Photothermal Radiometry of Carbon Fiber Reinfored Polymers”, Chinese J. Lasers 42 (7),185 – 189, July 2015. - PDF
  3. Depth profile reconstructions of electronic transport properties in H+ MeV-energy ion-implanted n-Si wafers using photocarrier radiometry
    R. Tai, C-H Wang, J-P Hu and A.Mandelis, “Depth profile reconstructions of electronic transport properties in H+ MeV-energy ion-implanted n-Si wafers using photocarrier radiometry”, J. Appl. Phys. 116 (3 ) 033706 (8 pages) (Jul 21, 2014) - PDF
  4. Thermal-Wave Fields in Solid Wedges using the Green Function Method: Theory and Experiment
    R. Tai , J. Zhang, C-H. Wang, and A. Mandelis, "Thermal-Wave Fields in Solid Wedges using the Green Function Method: Theory and Experiment" J. Appl. Phys. 113 (3), 133501 DOI: 10.1063/1.4798575: April 7, 2013 - PDF
  5. Equivalence of normalized thermal-wave fields between curved and flat surfaces and its application in the characterization of curved samples
    C-H. Wang, J. Zhang, L.W. Liu, and A. Mandelis, "Equivalence of normalized thermal-wave fields between curved and flat surfaces and its application in the characterization of curved samples", Int. J. Thermophys. 34 (8-9), 1429 – 1434 (2013) [DOI 10.1007/s10765-013-1441-z]. - PDF
  6. Characterization of the Thermal-Wave Field in a Wedge-Shaped Solid Using the Green’s Function Method
    J. Zhang , R. Tai , C-H Wang, and A. Mandelis, "Characterization of the Thermal-Wave Field in a Wedge-Shaped Solid Using the Green’s Function Method", Int. J. Thermophys. 34 (8-9), 1585-1590, September 2013. - PDF
  7. Accurate reconstruction of the thermal conductivity depth profile in case hardened steel
    R. Cellorio, E. Apiñaniz, A. Mendioroz, A. Salazar and A. Mandelis, "Accurate reconstruction of the thermal conductivity depth profile in case hardened steel", J. Appl. Phys. 107, 083519 (1 – 7) May 2010. - PDF
  8. Curvature-insensitive methodology for thermal-wave depth-profilometry in curvilinear solids
    L. Liu, C. Wang, X. Yuan and A. Mandelis, "Curvature-insensitive methodology for thermal-wave depth-profilometry in curvilinear solids", J. Phys. D: Appl. Phys. 43, 285403 (1 – 9) (2010). - PDF
  9. Optical and thermal depth profile reconstructions of inhomogeneous polymerization in dental resins using photothermal waves
    P. Martinez, A. Mandelis and J. J. Alvarado-Gil, "Optical and thermal depth profile reconstructions of inhomogeneous polymerization in dental resins using photothermal waves", J. Appl. Phys. 108, 054902 (1 – 10), (2010). - PDF
  10. Similarity normalization method for thermal conductivity depth profile reconstruction from inhomogeneous cylindrical and flat solids using thermal waves
    L. Liu, C. Wang, X. Yuan and A. Mandelis, "Similarity normalization method for thermal conductivity depth profile reconstruction from inhomogeneous cylindrical and flat solids using thermal waves", J. Appl. Phys. 107, 053503 (1 – 5), March 2010. - PDF
  11. Reconstruction of radial thermal conductivity depth profile in case hardened steel rods
    R. Celorrio, A. Mendioroz, E. Apiñaniz, A. Salazar, C. Wang and A. Mandelis, "Reconstruction of radial thermal conductivity depth profile in case hardened steel rods", J. Appl. Phys. 105, 083517 (1 – 7), April 2009. - PDF
  12. Photothermal determination of thermal diffusivity and polymerization depth profiles of polymerized dental resins
    P. Martínez-Torres, A. Mandelis and J. J. Alvarado-Gil, "Photothermal determination of thermal diffusivity and polymerization depth profiles of polymerized dental resins", J. Appl. Phys. 106, 114906 (1 – 7), December 2009. - PDF
  13. Reconstruction of depth profiles of thermal conductivity of case hardened steels using a three-dimensional photothermal technique
    H. Qu, C-H. Wang, X. Guo and A. Mandelis, "Reconstruction of depth profiles of thermal conductivity of case hardened steels using a three-dimensional photothermal technique", J. Appl. Phys. 104, 113518 (1 – 9), December 2008. - PDF
  14. Laser photothermal radiometric instrumentation for fast in-line measurements of industrial steel hardness inspection and quality control
    X. Guo, K. Sivagurunathan, J. Garcia, A. Mandelis, S. Giunta, and S. Milletari, "Laser photothermal radiometric instrumentation for fast in-line measurements of industrial steel hardness inspection and quality control", Appl. Opt. 48 No. 7, C11 – C23, 1 March 2009. - PDF
  15. Influence of laser beam size on measurement sensitivity of thermophysical property gradients in layered structures using thermal-wave techniques
    C. Wang, A. Mandelis, H. Qu and Z.-Y. Chen, "Influence of laser beam size on measurement sensitivity of thermophysical property gradients in layered structures using thermal-wave techniques", J. Appl. Phys. 103, 043510 (1 – 8) (2008). - PDF
  16. Transverse hardness photothermal phase imaging and depth profilometry of heat treated steels
    Y. Liu, A. Mandelis, N. Baddour and C.H. Wang, "Transverse hardness photothermal phase imaging and depth profilometry of heat treated steels", Canadian Institute for NDE (CINDE) Journal, 28 (1), 14 – 22 (January/February 2007). -
  17. Case depth determination in heat treated steel products using photothermal radiometric interferometric phase minima
    C.H. Wang and A. Mandelis, "Case depth determination in heat treated steel products using photothermal radiometric interferometric phase minima", NDT&E 40, 158 – 167 (2007). - PDF
  18. Photothermal Depth Profilometry of Heat-Treated Hardened 0.15 – 0.2 % C, 0.6 – 0.9 % Mn Steels
    Y. Liu, N. Baddour, A. Mandelis and C. Beingessner, "Photothermal Depth Profilometry of Heat-Treated Hardened 0.15 - 0.2 % C, 0.6 - 0.9 % Mn Steels", J. Appl. Phys. 96 (3), 1521 – 1528 (1 August 2004). - PDF
  19. Inspection of an End Quenched 0.15-0.2% C, 0.6-0.9% Mn Steel Jominy Bar with Photothermal Radiometric Techniques
    Y. Liu, N. Baddour, A. Mandelis and C. Wang, "Inspection of an End Quenched 0.15-0.2% C, 0.6-0.9% Mn Steel Jominy Bar with Photothermal Radiometric Techniques", J. Appl. Phys. 96 (4), 1929 - 1933 (15 August 2004). - PDF
  20. Transverse depth-profilometric hardness photothermal phase imaging of heat treated steels
    Y. Liu, N. Baddour and A. Mandelis, "Transverse depth-profilometric hardness photothermal phase imaging of heat treated steels", J. Appl. Phys. 94 (9), 5543-5548 (1 November, 2003). - PDF
  21. Physical Mechanisms of Thermal Diffusivity Depth-Profile Generation in Hardened low-alloy Mn, Si, Cr, Mo Steel Reconstructed by Photothermal Radiometry
    L. Nicolaides, A. Mandelis and C. J. Beingessner, "Physical Mechanisms of Thermal Diffusivity Depth-Profile Generation in Hardened low-alloy Mn, Si, Cr, Mo Steel Reconstructed by Photothermal Radiometry", J. Appl. Phys. 89 (12), 7879-7884 (15 June 2001). - PDF
  22. Methods for Surface Roughness Elimination from Thermal-Wave Frequency Scans in Thermally Inhomogeneous Solids
    L. Nicolaides and A. Mandelis, "Methods for Surface Roughness Elimination from Thermal-Wave Frequency Scans in Thermally Inhomogeneous Solids", J. Appl. Phys. 90 (3), 1255-1265 (1 August 2001). - PDF
  23. An Adaptive, Multiscale Inverse Scattering Approach to Photothermal Depth Profilometry
    E. L. Miller, I. Yavuz, L. Nicolaides and A. Mandelis, "An Adaptive, Multiscale Inverse Scattering Approach to Photothermal Depth Profilometry", Circuits Systems Signal Process 19 (4), 339 - 363 (2000). - PDF
  24. Experimental and Image-Inversion Optimization Aspects of Thermal-Wave Diffraction Tomographic Microscopy
    L. Nicolaides and A. Mandelis, "Experimental and Image-Inversion Optimization Aspects of Thermal-Wave Diffraction Tomographic Microscopy", Optics Express, 7, (13), 519-532, 2000. - PDF
  25. Laser Infrared Photothermal Radiometric Depth Profilometry of Steels and its Potential in Rail track Evaluation
    A. Mandelis, M. Munidasa and L. Nicolaides, "Laser Infrared Photothermal Radiometric Depth Profilometry of Steels and its Potential in Rail track Evaluation", NDT&E International 32, 437-443 (1999). - PDF
  26. Buried Thermoplastic Layer Diagnostics by the Use of Combined Frequency-Domain and Impulse Response Photo-Thermo-Mechanical Radiometry
    M. Munidasa, A. Mandelis and M. Ball, "Buried Thermoplastic Layer Diagnostics by the Use of Combined Frequency-Domain and Impulse Response Photo-Thermo-Mechanical Radiometry", Rev. Sci. Instrum. 69, No. 2, 507-511, February 1998. - PDF
  27. Application of a Generalized Methodology for Quantitative Thermal Diffusivity Depth Profile Reconstruction in Manufactured Inhomogeneous Steel-Based Materials
    M. Munidasa, F. Funak and A. Mandelis, "Application of a Generalized Methodology for Quantitative Thermal Diffusivity Depth Profile Reconstruction in Manufactured Inhomogeneous Steel-Based Materials", J. Appl. Phys. 83, No. 7, 3495-3498, April 1998. - PDF
  28. Thermal-wave Infrared Radiometric Slice Diffraction Tomography with Back-propagation and Transmission Reconstructions: Experimental
    L. Nicolaides, M. Munidasa and A. Mandelis, "Thermal-wave Infrared Radiometric Slice Diffraction Tomography with Back-propagation and Transmission Reconstructions: Experimental", Inverse Problems 13, 1413-1425 (1997). - PDF
  29. Image-enhanced Thermal-wave Slice Diffraction Tomography with Numerically Simulated Reconstruction
    L. Nicolaides and A. Mandelis, "Image-enhanced Thermal-wave Slice Diffraction Tomography with Numerically Simulated Reconstruction", Inverse Problems 13, 1393-1412 (1997). - PDF
  30. Generalized Methodology for Thermal Diffusivity Depth Profile Reconstruction in Semi-Infinite and Finitely Thick Inhomogeneous Solids
    A. Mandelis, F. Funak and M. Munidasa, "Generalized Methodology for Thermal Diffusivity Depth Profile Reconstruction in Semi-Infinite and Finitely Thick Inhomogeneous Solids", J. Appl. Phys. 80, 5570-5578, November 15, 1996. - PDF
  31. Thermal Wave Slice Tomography Using Wave Field Reconstruction
    O. Padé and A. Mandelis, "Thermal Wave Slice Tomography Using Wave Field Reconstruction", Inverse Problems 10, 185-197, (1994). - PDF
  32. Depth Profilometry of Near-Surface Inhomogeneities via Laser-Photothermal Probing of the Thermal Diffusivity of Condensed Phases
    A. Mandelis and M. Munidasa, "Depth Profilometry of Near-Surface Inhomogeneities via Laser-Photothermal Probing of the Thermal Diffusivity of Condensed Phases", Int. J. Thermophys. 15, 1299-1309, November 1994. - PDF
  33. Computational Thermal Wave Slice Tomography with Back Propagation and Transmission Reconstructions
    O. Padé and A. Mandelis, "Computational Thermal Wave Slice Tomography with Back Propagation and Transmission Reconstructions", Rev. Sci Instrum. 64, 3548-3562, December 1993. - PDF
  34. Photoacoustic Frequency Domain Depth Profilometry of Surface Layer Inhomogeneities: Application to Laser Processed Steels
    T. C. Ma, M. Munidasa and A. Mandelis, "Photoacoustic Frequency Domain Depth Profilometry of Surface Layer Inhomogeneities: Application to Laser Processed Steels", J. Appl. Phys. 71, 6029 - 6035, 1992. - PDF
  35. Non Destructive Depth Profiling of Laser Processed Zr 2.5Nb Alloy by Infrared Photothermal Radiometry
    M. Munidasa, T. C. Ma, A. Mandelis, S.K. Brown and L. Mannik, "Non Destructive Depth Profiling of Laser Processed Zr 2.5Nb Alloy by Infrared Photothermal Radiometry", J. Mat. Sci. Eng. A 159, 111 - 118, December 1992. - PDF
  36. Resolution of Photothermal Tomographic Imaging of Subsurface Defects in Metals with Ray Optic Reconstruction
    M. Munidasa, A. Mandelis and C. Ferguson, "Resolution of Photothermal Tomographic Imaging of Subsurface Defects in Metals with Ray Optic Reconstruction", Appl. Phys. A. 54, 244 - 250, 1992. - PDF
  37. Photopyroelectric Thermal Wave Tomography of Aluminum with Ray Optic Reconstruction
    M. Munidasa and A. Mandelis, "Photopyroelectric Thermal Wave Tomography of Aluminum with Ray Optic Reconstruction", J.O.S.A. A8, 1851 - 1858, December, 1991. - PDF
  38. Photoacoustic Frequency-Domain Depth Profiling of Continuously Inhomogeneous Solids; Theory and Quantitative Profilometry of Octylcyanobiphenyl (8CB) Liquid Crystals
    A. Mandelis, E. Schoubs, S. B. Peralta and J. Thoen, "Photoacoustic Frequency-Domain Depth Profiling of Continuously Inhomogeneous Solids; Theory and Quantitative Profilometry of Octylcyanobiphenyl (8CB) Liquid Crystals", J. Acoust. Soc. Am. 89, 1909-1910 (1991). - PDF
  39. Photoacoustic Frequency Domain Depth Profiling of Continuously Inhomogeneous Condensed Phases. Theory and Simulations for the Inverse Problem
    A. Mandelis, S.B. Peralta and J. Thoen, "Photoacoustic Frequency Domain Depth Profiling of Continuously Inhomogeneous Condensed Phases. Theory and Simulations for the Inverse Problem", J. Appl. Phys. 70, 1761 - 1770, August, 1991. - PDF
  40. Photoacoustic Depth Profilometry of Magnetic Field induced Thermal Diffusivity Inhomogeneity in the Liquid Crystal Octylcyanobiphenyl (8CB)
    A. Mandelis, E. Schoubs, S.B. Peralta and J. Thoen, "Photoacoustic Depth Profilometry of Magnetic Field induced Thermal Diffusivity Inhomogeneity in the Liquid Crystal Octylcyanobiphenyl (8CB)", J. Appl. Phys. 70, 1771 - 1777, August, 1991. - PDF
  41. Photopyroelectric Spatially Resolved Imaging of Thermal Wave Fields
    M. Mieszkowski and A. Mandelis, "Photopyroelectric Spatially Resolved Imaging of Thermal Wave Fields", J.O.S.A. A 7 (4), 552 - 557, April, 1990. - PDF
  42. Quantitative Depth Profiling of Biporous Nickel Electrodes by Frequency Domain Laser Induced Photoacoustic Spectroscopy
    A. Mandelis and J.D. Lymer, "Quantitative Depth Profiling of Biporous Nickel Electrodes by Frequency Domain Laser Induced Photoacoustic Spectroscopy", Appl. Spectrosc. 39 (3), 473 - 480, May/June, 1985. - PDF