Publications: Diffusion-Wave Instrumentation, Analytical Methodologies for NDE, Sensing, and Imaging

Diffusion-Wave Instrumentation, Analytical Methodologies for NDE, Sensing, and Imaging

  1. Non-destructive thermal-wave-radar imaging of manufactured green powder metallurgy compact flaws (cracks)
    A. Melnikov, J. Tolev, K. Sivagurunathan, X. Guo, A. Mandelis, K. Ly, and R. Lawcock, “Non-destructive thermal-wave-radar imaging of manufactured green powder metallurgy compact flaws (cracks)” NDT&E Int. 86, 140 - 152 (2017). - PDF
  2. Evaluation of mechanical performance of NiCo nanocoated aerospace aluminum alloy using quantitative photo-thermo-mechanical radiometry as a non-contact strain gauge
    H. Huan, A. Mandelis, L. Liu, and A. Melnikov, “Evaluation of mechanical performance of NiCo nanocoated aerospace aluminum alloy using quantitative photo-thermo-mechanical radiometry as a non-contact strain gauge”, NDT&E Int. 87, 44-49 (2017). DOI:10.1016/j.ndteint.2017.01.004 - PDF
  3. High Frame Rate Synthetic Aperture Ultrasound Imaging Using Mismatched Coded Excitation Waveform Engineering. Part I: A feasibility study
    B. Lashkari, K. Zhang, E. Dovlo and A. Mandelis, "High Frame Rate Synthetic Aperture Ultrasound Imaging Using Mismatched Coded Excitation Waveform Engineering. Part I: A feasibility study", IEEE UFFC (submitted January 2016). -
  4. High Frame Rate Synthetic Aperture Ultrasound Imaging Using Mismatched Coded Excitation Waveform Engineering: A feasibility study
    B. Lashkari, K. Zhang, E. Dovlo and A. Mandelis, “High Frame Rate Synthetic Aperture Ultrasound Imaging Using Mismatched Coded Excitation Waveform Engineering: A feasibility study”, IEEE UFFC 63 (6), 828 – 841 (June 2016). DOI: 10.1109/TUFFC.2016.2551705 - PDF
  5. Step-Scan T-Cell Fourier Transform Infrared Photoacoustic Spectroscopy (FTIR-PAS) for Monitoring Environmental Air Pollutants
    L. Liu, A. Mandelis, A. Melnikov, K. Michaelian, H. Huan and C. Haisch, “Step-Scan T-Cell Fourier Transform Infrared Photoacoustic Spectroscopy (FTIR-PAS) for Monitoring Environmental Air Pollutants”, Int J Thermophys 37 (64), 9 pages (May 2016). DOI 10.1007/s10765-016-2070-0 - PDF
  6. Step Scan T-cell-based Differential Fourier Transform Infrared Photoacoustic Spectroscopy (FTIR-PAS) for detection of ambient air contaminants
    L. Liu, A. Mandelis, H. Huan and A. Melnikov, “Step Scan T-cell-based Differential Fourier Transform Infrared Photoacoustic Spectroscopy (FTIR-PAS) for detection of ambient air contaminants”, Appl. Phys. B B, 122 (10), 268 (October 2016). DOI: 10.1007/s00340-016-6545-2 - PDF
  7. Non-destructive and Non-contacting Stress-strain Characterization of Aerospace Metallic Alloys using Photo-Thermo-Mechanical Radiometry
    H. Huan, A. Mandelis, L. Liu, and A. Melnikov, “Non-destructive and Non-contacting Stress-strain Characterization of Aerospace Metallic Alloys using Photo-Thermo-Mechanical Radiometry”, NDT&E Int. 84, 47 – 53 (2016). - PDF
  8. Step Scan T-cell Fourier-Transform Infra-Red Photoacoustic Spectroscopy (FTIR-PAS) for ambient air contamination detection
    L. Liu, A. Mandelis, A. Melnikov, K. Michaelian and H. Huan, “Step Scan T-cell Fourier-Transform Infra-Red Photoacoustic Spectroscopy (FTIR-PAS) for ambient air contamination detection”, Vibrational Spectrosc. 87, 94-98 (2016) - PDF
  9. Truncated-correlation photothermal coherence tomography for deep subsurface analysis
    S. Kaiplavil and A. Mandelis, "Truncated-correlation photothermal coherence tomography for deep subsurface analysis", Nature Photonics 8, 635 - 642 (June 29, 2014). DOI: 10.10.1038/NPHOTON.2014.111; Accompanied by Supplementary topics, pp. 1 – 21. - PDF
  10. Thermal Coherence Tomography: Depth-Resolved Imaging in Parabolic Diffusion-Wave Fields Using the Thermal-Wave Radar
    N. Tabatabaei and A. Mandelis, "Thermal Coherence Tomography: Depth-Resolved Imaging in Parabolic Diffusion-Wave Fields Using the Thermal-Wave Radar", Int. J. Thermophys. 33 (10 – 11), 1989 – 1995 (2013) [DOI 10.1007/s10765-012-1285-y]. - PDF
  11. Non-destructive measurements of large case depths in hardened steels using the thermal-wave radar
    R. Velasquez-Hernandez, A. Melnikov, A. Mandelis, K. Sivagurunathan, M. E. Rodriquez-Garcia and J. Garcia, "Non-destructive measurements of large case depths in hardened steels using the thermal-wave radar", NDT&E International 45, 16 – 21 (2012). - PDF
  12. Highly depth-resolved chirp pulse photothermal radar for bone diagnostics
    S. Kaiplavil and A. Mandelis, "Highly depth-resolved chirp pulse photothermal radar for bone diagnostics", Rev. Sci. Instrum. 82, 074906 (1 – 9) (2011). Paper selected for inclusion in Virtual Journal of Biological Physics Research (VJBIO) http://www.vjbio.org, 22 (3), August 1, 2011. Section: Instrumentation Development. Paper selected for inclusion in Virtual Journal of Ultrafast Science http://www.vjultrafast.org, 10 (8), August 2011. Section: Applications - PDF
  13. Thermal coherence tomography using match filter binary phase coded diffusion waves
    N. Tabatabaei and A. Mandelis, "Thermal coherence tomography using match filter binary phase coded diffusion waves", Phys. Rev. Lett. 107, 165901 (14 October 2011) [5 pages]. Article highlighted by the Journal as being of special interest. - PDF
  14. Thermophotonic radar imaging; An emissivity-normalized modality with advantages over phase lock-in thermography
    N. Tabatabaei, A. Mandelis and B. Amaechi, "Thermophotonic radar imaging; An emissivity-normalized modality with advantages over phase lock-in thermography", Appl. Phys. Lett. 98, 163706 (1 – 3) (2011). - PDF
  15. Characterization of hardened cylindrical C1018 steel rods (0.14–0.2% C, 0.6–0.9% Mn) using photothermal radiometry
    Chinhua Wang and Andreas Mandelis, "Characterization of hardened cylindrical C1018 steel rods (0.14–0.2% C, 0.6–0.9% Mn) using photothermal radiometry", Rev. Sci. Instrum. 78, 054902 (1 – 5) (2007). - PDF
  16. Frequency Domain Photothermal Radiometry with Spherical Solids
    C.-H. Wang, Y. Liu, A. Mandelis and J. Shen, "Frequency Domain Photothermal Radiometry with Spherical Solids", J. Appl. Phys. 101, 083503 (1 – 8) (2007). - PDF
  17. Laser photothermal non-destructive inspection method for hairline crack detection in unsintered automotive parts: A statistical approach
    J. Tolev and A. Mandelis, "Laser photothermal non-destructive inspection method for hairline crack detection in unsintered automotive parts: A statistical approach", NDT&E Int. 43 (4), 283 – 296 (June 2010). - PDF
  18. Polypyrrole particles as a thermal transducer of NIR radiation in hot-melt adhesives
    F. Li, H. Zhan, M. A. Winnik, A. Matvienko, and A. Mandelis, "Polypyrrole particles as a thermal transducer of NIR radiation in hot-melt adhesives", J. Mat. Chem. 40, 4309-4315 (2007). - PDF
  19. Thermal-wave radar: A novel subsurface imaging modality with extended depth-resolution dynamic range
    N. Tabatabei and A. Mandelis, "Thermal-wave radar: A novel subsurface imaging modality with extended depth-resolution dynamic range", Rev. Sci. Instrum. 80, 034902 (1 – 11) (March 2009). - PDF
  20. Influence of vignetting on signal analysis of photocarrier radiometry of semiconductor wafers
    B. Li, D. Shaughnessy and A. Mandelis, "Influence of vignetting on signal analysis of photocarrier radiometry of semiconductor wafers", Rev. Sci. Instrum. 76, 063703 (1 – 6) (2005). - PDF
  21. Remote Quantitative Temperature and Thickness Measurements of Plasma-deposited Titanium Nitride Thin Coatings on Steel using a Laser Interferometric Thermoreflectance Optical Thermometer
    Yue Liu, Andreas Mandelis, Mervyn Choy, Chinhua Wang and Lee Segal, "Remote Quantitative Temperature and Thickness Measurements of Plasma-deposited Titanium Nitride Thin Coatings on Steel using a Laser Interferometric Thermoreflectance Optical Thermometer", Rev. Sci. Instrum. 76, 084902 (1 - 11), (August 2005). - PDF
  22. Thermal-wave nondestructive evaluation of cylindrical composite structures using frequency-domain photothermal radiometry
    Chinhua Wang, Andreas Mandelis, and Yue Liu, "Thermal-wave nondestructive evaluation of cylindrical composite structures using frequency-domain photothermal radiometry", J. Appl. Phys. 97, 014911 (1 – 12) (2005). - PDF
  23. Photothermal investigation of the thermal shock behavior of alumina ceramics for engine components
    B. Li, A. Mandelis and Z. Z. Kish, "Photothermal investigation of the thermal shock behavior of alumina ceramics for engine components", J. Appl. Phys. 95 (3), 1042-1049 (1 February 2004). - PDF
  24. Photothermal Radiometry with Solid Cylindrical Samples
    C. Wang, A. Mandelis and Y. Liu, "Photothermal Radiometry with Solid Cylindrical Samples", J. Appl. Phys. 96, 3756 - 3762 (2004). - PDF
  25. Quantities, Terminology, and Symbols in Photothermal and Related Spectroscopies; (IUPAC Recommendations 2004)
    M. Terazima, A. Mandelis, et al. "Quantities, Terminology, and Symbols in Photothermal and Related Spectroscopies; (IUPAC Recommendations 2004)", IUPAC Pure Appl. Chem. 76, 1083 – 1118 (2004). - PDF
  26. Novel Transmission Open Photoacoustic Cell Configuration for Thermal Diffusivity Measurements in Liquids
    J. A. Balderas-Lopez and A. Mandelis, "Novel Transmission Open Photoacoustic Cell Configuration for Thermal Diffusivity Measurements in Liquids", Int. J. Thermophys. 23, No. 3, 605 - 614 (May 2002). - PDF
  27. Combined photothermal and photoacoustic characterization of silicon-epoxy composites and the existence of a particle thermal percolation threshold
    M. E. Rodriguez, P. J. Mendoza, A. Mandelis and L. Nicolaides, "Combined photothermal and photoacoustic characterization of silicon-epoxy composites and the existence of a particle thermal percolation threshold", Nuclear Instrum. Methods Phys. Res. B 184, 421-429 (2001). - PDF
  28. Diffusion-Wave Laser Radiometric Diagnostic Quality Control Technologies for Materials NDE/NDT
    A. Mandelis, "Diffusion-Wave Laser Radiometric Diagnostic Quality Control Technologies for Materials NDE/NDT", NDT&E Int. 34, 277-287 (2001) - PDF
  29. Simple, Accurate and Precise Measurements of Thermal Diffusivity in Liquids using a Thermal-Wave Cavity
    J. A. Balderas and A. Mandelis, "Simple, Accurate and Precise Measurements of Thermal Diffusivity in Liquids using a Thermal-Wave Cavity", Rev. Sci. Instrum. 72 (6), 2649-2652 (June 2001). - PDF
  30. Instrumental Noise and Detectivity Analysis of Photopyroelectric Destructive Thermal-Wave Interferometry
    C.-H. Wang and A. Mandelis, "Instrumental Noise and Detectivity Analysis of Photopyroelectric Destructive Thermal-Wave Interferometry", Rev. Sci. Instrum. 71 (5), 1961-1970 (May 2000). - PDF
  31. Lock-in Common Mode Rejection Demodulation: Measurement Technique and Applications to Thermal-Wave Detection. Experimental
    S. Paoloni, L. Nicolaides and A. Mandelis, "Lock-in Common Mode Rejection Demodulation: Measurement Technique and Applications to Thermal-Wave Detection. Experimental", Rev. Sci. Instrum. 71 (8), 2445-2451 (June 2000). - PDF
  32. Lock-in Common Mode Rejection Demodulation: Measurement Technique and Applications to Thermal-Wave Detection. Theoretical
    A. Mandelis, S. Paoloni and L. Nicolaides, "Lock-in Common Mode Rejection Demodulation: Measurement Technique and Applications to Thermal-Wave Detection. Theoretical", Rev. Sci. Instrum. 71 (8), 2440-2444 (June 2000). - PDF
  33. A Novel PVDF Thin-Film Photopyroelectric Thermal-Wave Interferometry
    A. Mandelis and C. Wang, "A Novel PVDF Thin-Film Photopyroelectric Thermal-Wave Interferometry", Ferroelectrics 236, 235- 246 (2000). - PDF
  34. Laser Infrared Photothermal Radiometry of Semiconductors: Principles and Applications to Solid-State Electronics
    A. Mandelis, "Laser Infrared Photothermal Radiometry of Semiconductors: Principles and Applications to Solid-State Electronics", Solid-State Electron. 42, No. 1, 1-15, 1998. - PDF
  35. Thermal-Wave Resonant-Cavity Measurements of the Thermal Diffusivity of Air: A comparison between Cavity-Length and Modulation-Frequency Scans
    J. Shen, A. Mandelis and B.D. Aloysius, "Thermal-Wave Resonant-Cavity Measurements of the Thermal Diffusivity of Air: A comparison between Cavity-Length and Modulation-Frequency Scans", Int. J. Thermophys. 17, No. 6, 1241-1254, November 1996. - PDF
  36. Thermal-Wave Resonator Cavity
    J. Shen and A. Mandelis, "Thermal-Wave Resonator Cavity", Rev. Sci. Instrum. 66, 4999-5005, October 1995. - PDF
  37. Signal-to-Noise Ratios in Lock-in Amplifier Synchronous Detection: A Generalized Communications Systems Approach with Application to Frequency-, Time-, and Hybrid (Rate-Window) Photothermal Measurements
    A. Mandelis, "Signal-to-Noise Ratios in Lock-in Amplifier Synchronous Detection: A Generalized Communications Systems Approach with Application to Frequency-, Time-, and Hybrid (Rate-Window) Photothermal Measurements", Rev. Sci. Instrum. 65, 3309-3323, November 1994. - PDF
  38. Photopyroelectric Spectroscopy of Condensed Phases: Technique and the State of the Art
    A. Mandelis, "Photopyroelectric Spectroscopy of Condensed Phases: Technique and the State of the Art", Condensed Matter News 2, 3-11, May/June 1993. -
  39. Photothermal Rate Window Spectrometry for Non Contact Bulk Lifetime Measurements in Semiconductors
    Z.H. Chen, R. Bleiss, A. Mandelis and F. Shimura, "Photothermal Rate Window Spectrometry for Non Contact Bulk Lifetime Measurements in Semiconductors", J. Appl. Phys. 73, 5043-5048, May 1993. - PDF
  40. Lock in Rate Window Thermomodulation (Thermal Wave) and Photomodulation Spectrometry: Technique, Instrumentation and Measurement Methodologies
    A. Mandelis and Z. Chen, "Lock in Rate Window Thermomodulation (Thermal Wave) and Photomodulation Spectrometry: Technique, Instrumentation and Measurement Methodologies", Rev. Sci. Instrum. 63, 2977 - 2988, May 1992. - PDF
  41. Optimization and Characterization of a Differential Photopyroelectric Spectrometer
    C. Christofides, K. Ghandi and A. Mandelis, "Optimization and Characterization of a Differential Photopyroelectric Spectrometer", Meas. Sci. Technol. 1, 1363 - 1370 (1990). (Paper selected for inclusion in Engineering Optics, February, 1991 issue) - PDF
  42. Fourier Transform Infrared Photopyroelectric Spectroscopy of Solids; A New Technique
    A. Mandelis, F. Boroumand, H. Solka, J. Highfield and H. van den Bergh, "Fourier Transform Infrared Photopyroelectric Spectroscopy of Solids; A New Technique", Appl. Spectrosc. 44 (1), 132 - 143, January, 1990. - PDF
  43. Optical Power Monitor Using a Thin-Film Pyroelectric Bimorph
    S.B. Peralta, K. Ghandi and A. Mandelis, "Optical Power Monitor Using a Thin-Film Pyroelectric Bimorph", Rev. Sci. Instrum. 61, 1038-1043, March 1990. - PDF
  44. Photopyroelectric Sensors for the Photothermal Analysis of Condensed Phases
    H. Coufal and A. Mandelis, "Photopyroelectric Sensors for the Photothermal Analysis of Condensed Phases", Ferroelectrics 118, 379-409, 1991. - PDF
  45. Frequency Modulated Impulse Response Photothermal Detection Through Optical Reflectance I: Theory
    A. Mandelis and J.F. Power, "Frequency Modulated Impulse Response Photothermal Detection Through Optical Reflectance I: Theory", Appl. Opt. 27 (16), 3397 - 3407, August, 1988. - PDF
  46. Frequency Modulated Impulse Response Photothermal Detection Through Optical Reflectance II: Experimental
    J.F. Power and A. Mandelis, "Frequency Modulated Impulse Response Photothermal Detection Through Optical Reflectance II: Experimental", Appl. Opt. 27 (16), 3408 - 3417, August, 1988. - PDF
  47. Photopyroelectric (P2E) Thermal Wave Detection Via Contactless Capacitive PVDF Metal Probe Tip Coupling
    M. Mieszkowski, K.F. Leung and A. Mandelis, "Photopyroelectric (P2E) Thermal Wave Detection Via Contactless Capacitive PVDF Metal Probe Tip Coupling", Rev. Sci. Instrum. 60 (3), 306 316, March, 1989. - PDF
  48. Time Delay Domain and Pseudo Random Noise Photoacoustic and Photothermal Wave Spectroscopies. A Review of the State of the Art
    A. Mandelis, "Time Delay Domain and Pseudo Random Noise Photoacoustic and Photothermal Wave Spectroscopies. A Review of the State of the Art", IEEE Transactions on Sonics and Ultrasonics, Special Issue on Photoacoustics UFFC 33, 590 614, September, 1986. - PDF
  49. Frequency Modulated (FM) Time Delay Photoacoustic and Photothermal Wave Spectroscopies. Technique, Instrumentation and Detection. Part I: Theoretical
    A. Mandelis, "Frequency Modulated (FM) Time Delay Photoacoustic and Photothermal Wave Spectroscopies. Technique, Instrumentation and Detection. Part I: Theoretical", Rev. Sci. Instrum. 57 (4), 617 - 621, April, 1986. - PDF
  50. Frequency Modulated (FM) Time Delay Photoacoustic and Photothermal Wave Spectroscopies. Technique, Instrumentation and Detection. Part II: Mirage Effect Spectrometer Design and Performance
    A. Mandelis, L.M.L. Borm and J. Tiessinga, "Frequency Modulated (FM) Time Delay Photoacoustic and Photothermal Wave Spectroscopies. Technique, Instrumentation and Detection. Part II: Mirage Effect Spectrometer Design and Performance", Rev. Sci. Instr. 57 (4), 622 - 629, April, 1986. - PDF
  51. Frequency Modulated (FM) Time Delay Photoacoustic and Photothermal Wave Spectroscopies. Technique, Instrumentation and Detection. Part III: Mirage Effect Spectrometer, Dynamic Range and Comparison to Pseudo Random Binary Sequence (PRBS) Method
    A. Mandelis, L.M.L. Borm and J. Tiessinga, "Frequency Modulated (FM) Time Delay Photoacoustic and Photothermal Wave Spectroscopies. Technique, Instrumentation and Detection. Part III: Mirage Effect Spectrometer, Dynamic Range and Comparison to Pseudo Random Binary Sequence (PRBS) Method", Rev. Sci. Instr. 57 (4), 630 - 635, April, 1986. - PDF
  52. Frequency Domain Photopyroelectric Spectroscopy of Condensed Phases: A New, Simple and Powerful Spectroscopic Technique
    A. Mandelis, "Frequency Domain Photopyroelectric Spectroscopy of Condensed Phases: A New, Simple and Powerful Spectroscopic Technique", Chem. Phys. Lett. 108 (4), 388 - 392, July, 1984. - PDF
  53. Phase Measurements in the Frequency Domain Photoacoustic Spectroscopy of Solids
    A. Mandelis, Y.C. Teng and B.S.H. Royce, "Phase Measurements in the Frequency Domain Photoacoustic Spectroscopy of Solids", J. Appl. Phys. 50 (11), 7138 - 7148, November, 1979. - PDF
  54. Time Domain Photoacoustic Spectroscopy of Solids
    A. Mandelis and B.S.H. Royce, "Time Domain Photoacoustic Spectroscopy of Solids", J. Appl. Phys. 50 (6), 4330 - 4338, June, 1979. - PDF