Publications: Diffusion-Wave Instrumentation, Analytical Methodologies for NDE, Sensing, and Imaging

Diffusion-Wave Instrumentation, Analytical Methodologies for NDE, Sensing, and Imaging

  1. Laser Induced Thermoelastic Contributions from Windows to Signal Background in a Photoacoustic Cell
    L. Liu, H. Huan, X. Zhang, L. Zhang, X. Shao, A. Mandelis, L. Dong, "Laser Induced Thermoelastic Contributions from Windows to Signal Background in a Photoacoustic Cell", Photoacoustics 22, 100257 (9 pages) (2021) https://doi.org/10.1016/j.pacs.2021.100257 - PDF
  2. Truncated Correlation Photoacoustic Coherence Tomography: An Axial Resolution Enhancement Imaging Modality
    A. Jangjoo, B. Lashkari, K. Sivagurunathan and A. Mandelis, “Truncated Correlation Photoacoustic Coherence Tomography: An Axial Resolution Enhancement Imaging Modality”, Photoacoustics 23, 100277 (April 2021). https://doi.org/10.1016/j.pacs.2021.100277 - PDF
  3. Highly Sensitive Broadband Differential Infrared Photoacoustic Spectroscopy with Wavelet Denoising Algorithm for Trace Gas Detection
    L. Liu, H. Huan, W. Li, A. Mandelis, Y.i Wang, L. Zhang, X. Zhang, X. Yin, X. Shao, “Highly Sensitive Broadband Differential Infrared Photoacoustic Spectroscopy with Wavelet Denoising Algorithm for Trace Gas Detection”, Photoacoustics 21, 100228 (9 pages) (2021); https://doi.org/10.1016/j.pacs.2020.100228 - PDF
  4. Quantitative non-destructive single-frequency thermal-wave-radar imaging of case depths in hardened steels
    Y. Wei, A. Melnikov, M. Wang and A. Mandelis “Quantitative non-destructive single-frequency thermal-wave-radar imaging of case depths in hardened steels”, J. Appl. Phys. 127, 245102 (10 pages) (2020); https://doic.org/10.1063/1,5139643 - PDF
  5. Quantitative Photothermal Lock-in Thermography Imaging of Curved Surfaces of Cylindrical Solids
    Y. Liu, T. Sun, C-H Wang, and A. Mandelis, “Quantitative Photothermal Lock-in Thermography Imaging of Curved Surfaces of Cylindrical Solids”, J. Appl. Phys. 127 (19), 195101 (13 pages), (15 May 2020); https://doi.org/10.1063/5.0007779 - PDF
  6. Non-destructive Photothermal Imaging of Ancient Marquetries using Lock-In Thermography and Enhanced Truncated-Correlation Photothermal Coherence Tomography
    P. Tavakolian, E. B. Shokouhi, S. Sfarra, G. Gargiulo and A. Mandelis, “Non-destructive Photothermal Imaging of Ancient Marquetries using Lock-In Thermography and Enhanced Truncated-Correlation Photothermal Coherence Tomography”, Journal of Cultural Heritage 46, 159-164 (2020); https://doi.org/10.1016/j.culher.2020.05.002 - PDF
  7. Mechanical Strength Evaluation of Elastic Materials by Multiphysical Nondestructive Methods: A Review
    H. Huan, L. Liu, A. Mandelis, C. Peng, X. Chen and J. Zhan, “Mechanical Strength Evaluation of Elastic Materials by Multiphysical Nondestructive Methods: A Review”, Appl. Sci. 10, 1588 (1 – 16) (2020); doi:10.3390/app10051588 - PDF
  8. Determination of Thermophysical Properties and Density Volume Fractions of Al2O3/Y-ZrO2 Layered Composite Materials using Transient Thermography and Two-Stage Inverse Nonlinear Heat Conduction Analysis
    S. Kooshki, A. Mandelis, M. Khodadad, A. Khosravifard and A. Melnikov, “Determination of Thermophysical Properties and Density Volume Fractions of Al2O3/Y-ZrO2 Layered Composite Materials using Transient Thermography and Two-Stage Inverse Nonlinear Heat Conduction Analysis”, J. Appl. Phys. 127, 045110 (14 pages) (2020); https://doi.org/10.1063/1.5116709 - PDF
  9. Multiple dissolved gas analysis in transformer oil based on Fourier transform infrared photoacoustic spectroscopy. Spectroscopy and Spectral Analysis
    L. Liu, H. Huan, A. Mandelis, and X. Shao. Multiple dissolved gas analysis in transformer oil based on Fourier transform infrared photoacoustic spectroscopy. Spectroscopy and Spectral Analysis 40(3), 684-687 (2020). doi:10.3964/j.issn.1000-0593 (2020) 03-0684-04 (In Chinese). - PDF
  10. Application of Linear Frequency Modulated Laser Ultrasonic Radar in Reflective Thickness and Defect Non-Destructive Testing
    H. Huan, A. Mandelis, L. Liu, B. Lashkari, and A. Melnikov, “Application of Linear Frequency Modulated Laser Ultrasonic Radar in Reflective Thickness and Defect Non-Destructive Testing”, NDT&E Int. 102, 84 – 89 (March 2019). - PDF
  11. Quantitative lock-in thermography imaging of thermal-wave spatial profiles and thermophysical property measurements in solids with inner corner geometries using thermal-wave field theory
    M. Wang, A. Mandelis, A. Melnikov and C. Wang, “Quantitative lock-in thermography imaging of thermal-wave spatial profiles and thermophysical property measurements in solids with inner corner geometries using thermal-wave field theory”, J. Appl. Phys. 124, 205106 (11 pages) (November 2018); https://doi.org/10.1063/1.5055705 - PDF
  12. Characterization of the mechanical stress-strain performance of aerospace alloy materials using frequency-domain photoacoustic ultrasound and photothermal methods: An FEM approach
    H. Huan, A. Mandelis, and L. Liu, “Characterization of the mechanical stress-strain performance of aerospace alloy materials using frequency-domain photoacoustic ultrasound and photothermal methods: An FEM approach”, Int. J. Thermophys. 39 (55) (11 pages) (2018). https://doi.org/10.1007/s10765-018-2374-3 - PDF
  13. Single frequency thermal wave radar: A next-generation dynamic thermography for quantitative non-destructive imaging over wide modulation frequency ranges
    A. Melnikov, L. Chen, D. Ramirez-Venegas, K. Sivagurunathan, Q. Sun, A. Mandelis, and I. Rojas Rodriguez, “Single frequency thermal wave radar: A next-generation dynamic thermography for quantitative non-destructive imaging over wide modulation frequency ranges”, Rev. Sci. Instrum. 89, 044901 (9 pages) (2018); doi: 10.1063/1.5016339 - PDF
  14. Fourier-transform infrared differential photoacoustic spectroscopy (FTIR-DPAS) for simultaneous monitoring of multiple air contaminants/trace gases
    L. Liu, A. Mandelis, and H. Huan “Fourier-transform infrared differential photoacoustic spectroscopy (FTIR-DPAS) for simultaneous monitoring of multiple air contaminants/trace gases" Int. J. Thermophys.39 (94) (7 pages) (2018). https://doi.org/10.1007/s10765-018-2411-2 - PDF
  15. Perspective: Principles and specifications of photothermal imaging methodologies and their applications to non-invasive biomedical and non-destructive materials imaging
    P. Tavakolian and A. Mandelis, “Perspective: Principles and specifications of photothermal imaging methodologies and their applications to non-invasive biomedical and non-destructive materials imaging”, J. Appl. Phys. 124, 160903 (2018) - PDF
  16. Induction Infrared Thermography and Thermal-Wave-Radar Analysis for Imaging Inspection and Diagnosis of Blade Composites
    R. Yang, Y. He, A. Mandelis, N. Wang, X. Wu and S. Huang, “Induction Infrared Thermography and Thermal-Wave-Radar Analysis for Imaging Inspection and Diagnosis of Blade Composites”, IEEE Transactions on Industrial Informatics 14 (12), 5637 – 5647 (Dec. 2018 ); doi: 10.1109/TII.2018.2834462 - PDF
  17. Coded excitation waveform engineering for high frame rate synthetic aperture ultrasound imaging
    B. Lashkari, K. Zhang, E. Dovlo and A. Mandelis, “Coded excitation waveform engineering for high frame rate synthetic aperture ultrasound imaging”, Ultrasonics 77, 121-132 (2017). http://dx.doi.org/10.1016/j.ultras.2017.02.007 - PDF
  18. Non-destructive thermal-wave-radar imaging of manufactured green powder metallurgy compact flaws (cracks)
    A. Melnikov, J. Tolev, K. Sivagurunathan, X. Guo, A. Mandelis, K. Ly, and R. Lawcock, “Non-destructive thermal-wave-radar imaging of manufactured green powder metallurgy compact flaws (cracks)” NDT&E Int. 86, 140 - 152 (2017). - PDF
  19. Evaluation of mechanical performance of NiCo nanocoated aerospace aluminum alloy using quantitative photo-thermo-mechanical radiometry as a non-contact strain gauge
    H. Huan, A. Mandelis, L. Liu, and A. Melnikov, “Evaluation of mechanical performance of NiCo nanocoated aerospace aluminum alloy using quantitative photo-thermo-mechanical radiometry as a non-contact strain gauge”, NDT&E Int. 87, 44-49 (2017). DOI:10.1016/j.ndteint.2017.01.004 - PDF
  20. “Frequency-Domain Laser Ultrasound (FDLU) Non-Destructive Evaluation of Stress/Strain Behavior in an Aluminum Alloy
    H. Huan, A. Mandelis, B. Lashkari and L. Liu, “Frequency-Domain Laser Ultrasound (FDLU) Non-Destructive Evaluation of Stress/Strain Behavior in an Aluminum Alloy”, Int. J. Thermophys. 38 (62), 1 – 11 (March 2017DOI 10.1007/s10765-017-2197-7 - PDF
  21. Step-scan Differential Fourier Transform Infrared Photoacoustic Spectroscopy (DFTIR-PAS): a spectral deconvolution method for weak absorber detection in the presence of strongly overlapping background absorptions
    L. Liu, A. Mandelis, H. Huan, and K. Michaelian, “Step-scan Differential Fourier Transform Infrared Photoacoustic Spectroscopy (DFTIR-PAS): a spectral deconvolution method for weak absorber detection in the presence of strongly overlapping background absorptions”, Optics Letters 42, Issue 7, pp. 1424-1427 (2017). DOI: 10.1364/OL.42.001424 - PDF
  22. Local-Stress-Induced Thermal Conductivity Anisotropy Analysis Using Non-Destructive Photo-Thermo-Mechanical Lock-in Thermography (PTM-LIT) Imaging
    H. Huan, A. Mandelis, L. Liu, and A. Melnikov, “Local-Stress-Induced Thermal Conductivity Anisotropy Analysis Using Non-Destructive Photo-Thermo-Mechanical Lock-in Thermography (PTM-LIT) Imaging”, NDT&E Int. 91, 79-87 (2017). http://dx.doi.org/10.1016/j.ndteint.2017.06.008 - PDF
  23. Enhanced truncated-correlation photothermal coherence tomography with application to deep subsurface defect imaging and 3-dimensional reconstructions
    P. Tavakolian, K. Sivagurunathan, and A. Mandelis, “Enhanced truncated-correlation photothermal coherence tomography with application to deep subsurface defect imaging and 3-dimensional reconstructions”, J. Appl. Phys. 122, 023103 (2017); doi: 10.1063/1.4992807 - PDF
  24. Non-destructive and Non-contacting Stress-strain Characterization of Aerospace Metallic Alloys using Photo-Thermo-Mechanical Radiometry
    H. Huan, A. Mandelis, L. Liu, and A. Melnikov, “Non-destructive and Non-contacting Stress-strain Characterization of Aerospace Metallic Alloys using Photo-Thermo-Mechanical Radiometry”, NDT&E Int. 84, 47 – 53 (2016). - PDF
  25. Step Scan T-cell-based Differential Fourier Transform Infrared Photoacoustic Spectroscopy (FTIR-PAS) for detection of ambient air contaminants
    L. Liu, A. Mandelis, H. Huan and A. Melnikov, “Step Scan T-cell-based Differential Fourier Transform Infrared Photoacoustic Spectroscopy (FTIR-PAS) for detection of ambient air contaminants”, Appl. Phys. B B, 122 (10), 268 (October 2016). DOI: 10.1007/s00340-016-6545-2 - PDF
  26. Step-Scan T-Cell Fourier Transform Infrared Photoacoustic Spectroscopy (FTIR-PAS) for Monitoring Environmental Air Pollutants
    L. Liu, A. Mandelis, A. Melnikov, K. Michaelian, H. Huan and C. Haisch, “Step-Scan T-Cell Fourier Transform Infrared Photoacoustic Spectroscopy (FTIR-PAS) for Monitoring Environmental Air Pollutants”, Int J Thermophys 37 (64), 9 pages (May 2016). DOI 10.1007/s10765-016-2070-0 - PDF
  27. High Frame Rate Synthetic Aperture Ultrasound Imaging Using Mismatched Coded Excitation Waveform Engineering: A feasibility study
    B. Lashkari, K. Zhang, E. Dovlo and A. Mandelis, “High Frame Rate Synthetic Aperture Ultrasound Imaging Using Mismatched Coded Excitation Waveform Engineering: A feasibility study”, IEEE UFFC 63 (6), 828 – 841 (June 2016). DOI: 10.1109/TUFFC.2016.2551705 - PDF
  28. Step Scan T-cell Fourier-Transform Infra-Red Photoacoustic Spectroscopy (FTIR-PAS) for ambient air contamination detection
    L. Liu, A. Mandelis, A. Melnikov, K. Michaelian and H. Huan, “Step Scan T-cell Fourier-Transform Infra-Red Photoacoustic Spectroscopy (FTIR-PAS) for ambient air contamination detection”, Vibrational Spectrosc. 87, 94-98 (2016) - PDF
  29. High Frame Rate Synthetic Aperture Ultrasound Imaging Using Mismatched Coded Excitation Waveform Engineering. Part I: A feasibility study
    B. Lashkari, K. Zhang, E. Dovlo and A. Mandelis, "High Frame Rate Synthetic Aperture Ultrasound Imaging Using Mismatched Coded Excitation Waveform Engineering. Part I: A feasibility study", IEEE UFFC (submitted January 2016). -
  30. Truncated-correlation photothermal coherence tomography for deep subsurface analysis
    S. Kaiplavil and A. Mandelis, "Truncated-correlation photothermal coherence tomography for deep subsurface analysis", Nature Photonics 8, 635 - 642 (June 29, 2014). DOI: 10.10.1038/NPHOTON.2014.111; Accompanied by Supplementary topics, pp. 1 – 21. - PDF
  31. Thermal Coherence Tomography: Depth-Resolved Imaging in Parabolic Diffusion-Wave Fields Using the Thermal-Wave Radar
    N. Tabatabaei and A. Mandelis, "Thermal Coherence Tomography: Depth-Resolved Imaging in Parabolic Diffusion-Wave Fields Using the Thermal-Wave Radar", Int. J. Thermophys. 33 (10 – 11), 1989 – 1995 (2013) [DOI 10.1007/s10765-012-1285-y]. - PDF
  32. Non-destructive measurements of large case depths in hardened steels using the thermal-wave radar
    R. Velasquez-Hernandez, A. Melnikov, A. Mandelis, K. Sivagurunathan, M. E. Rodriquez-Garcia and J. Garcia, "Non-destructive measurements of large case depths in hardened steels using the thermal-wave radar", NDT&E International 45, 16 – 21 (2012). - PDF
  33. Thermophotonic radar imaging; An emissivity-normalized modality with advantages over phase lock-in thermography
    N. Tabatabaei, A. Mandelis and B. Amaechi, "Thermophotonic radar imaging; An emissivity-normalized modality with advantages over phase lock-in thermography", Appl. Phys. Lett. 98, 163706 (1 – 3) (2011). - PDF
  34. Thermal coherence tomography using match filter binary phase coded diffusion waves
    N. Tabatabaei and A. Mandelis, "Thermal coherence tomography using match filter binary phase coded diffusion waves", Phys. Rev. Lett. 107, 165901 (14 October 2011) [5 pages]. Article highlighted by the Journal as being of special interest. - PDF
  35. Highly depth-resolved chirp pulse photothermal radar for bone diagnostics
    S. Kaiplavil and A. Mandelis, "Highly depth-resolved chirp pulse photothermal radar for bone diagnostics", Rev. Sci. Instrum. 82, 074906 (1 – 9) (2011). Paper selected for inclusion in Virtual Journal of Biological Physics Research (VJBIO) http://www.vjbio.org, 22 (3), August 1, 2011. Section: Instrumentation Development. Paper selected for inclusion in Virtual Journal of Ultrafast Science http://www.vjultrafast.org, 10 (8), August 2011. Section: Applications - PDF
  36. Polypyrrole particles as a thermal transducer of NIR radiation in hot-melt adhesives
    F. Li, H. Zhan, M. A. Winnik, A. Matvienko, and A. Mandelis, "Polypyrrole particles as a thermal transducer of NIR radiation in hot-melt adhesives", J. Mat. Chem. 40, 4309-4315 (2007). - PDF
  37. Thermal-wave radar: A novel subsurface imaging modality with extended depth-resolution dynamic range
    N. Tabatabei and A. Mandelis, "Thermal-wave radar: A novel subsurface imaging modality with extended depth-resolution dynamic range", Rev. Sci. Instrum. 80, 034902 (1 – 11) (March 2009). - PDF
  38. Laser photothermal non-destructive inspection method for hairline crack detection in unsintered automotive parts: A statistical approach
    J. Tolev and A. Mandelis, "Laser photothermal non-destructive inspection method for hairline crack detection in unsintered automotive parts: A statistical approach", NDT&E Int. 43 (4), 283 – 296 (June 2010). - PDF
  39. Frequency Domain Photothermal Radiometry with Spherical Solids
    C.-H. Wang, Y. Liu, A. Mandelis and J. Shen, "Frequency Domain Photothermal Radiometry with Spherical Solids", J. Appl. Phys. 101, 083503 (1 – 8) (2007). - PDF
  40. Characterization of hardened cylindrical C1018 steel rods (0.14–0.2% C, 0.6–0.9% Mn) using photothermal radiometry
    Chinhua Wang and Andreas Mandelis, "Characterization of hardened cylindrical C1018 steel rods (0.14–0.2% C, 0.6–0.9% Mn) using photothermal radiometry", Rev. Sci. Instrum. 78, 054902 (1 – 5) (2007). - PDF
  41. Thermal-wave nondestructive evaluation of cylindrical composite structures using frequency-domain photothermal radiometry
    Chinhua Wang, Andreas Mandelis, and Yue Liu, "Thermal-wave nondestructive evaluation of cylindrical composite structures using frequency-domain photothermal radiometry", J. Appl. Phys. 97, 014911 (1 – 12) (2005). - PDF
  42. Remote Quantitative Temperature and Thickness Measurements of Plasma-deposited Titanium Nitride Thin Coatings on Steel using a Laser Interferometric Thermoreflectance Optical Thermometer
    Yue Liu, Andreas Mandelis, Mervyn Choy, Chinhua Wang and Lee Segal, "Remote Quantitative Temperature and Thickness Measurements of Plasma-deposited Titanium Nitride Thin Coatings on Steel using a Laser Interferometric Thermoreflectance Optical Thermometer", Rev. Sci. Instrum. 76, 084902 (1 - 11), (August 2005). - PDF
  43. Influence of vignetting on signal analysis of photocarrier radiometry of semiconductor wafers
    B. Li, D. Shaughnessy and A. Mandelis, "Influence of vignetting on signal analysis of photocarrier radiometry of semiconductor wafers", Rev. Sci. Instrum. 76, 063703 (1 – 6) (2005). - PDF
  44. Quantities, Terminology, and Symbols in Photothermal and Related Spectroscopies; (IUPAC Recommendations 2004)
    M. Terazima, A. Mandelis, et al. "Quantities, Terminology, and Symbols in Photothermal and Related Spectroscopies; (IUPAC Recommendations 2004)", IUPAC Pure Appl. Chem. 76, 1083 – 1118 (2004). - PDF
  45. Photothermal Radiometry with Solid Cylindrical Samples
    C. Wang, A. Mandelis and Y. Liu, "Photothermal Radiometry with Solid Cylindrical Samples", J. Appl. Phys. 96, 3756 - 3762 (2004). - PDF
  46. Photothermal investigation of the thermal shock behavior of alumina ceramics for engine components
    B. Li, A. Mandelis and Z. Z. Kish, "Photothermal investigation of the thermal shock behavior of alumina ceramics for engine components", J. Appl. Phys. 95 (3), 1042-1049 (1 February 2004). - PDF
  47. Novel Transmission Open Photoacoustic Cell Configuration for Thermal Diffusivity Measurements in Liquids
    J. A. Balderas-Lopez and A. Mandelis, "Novel Transmission Open Photoacoustic Cell Configuration for Thermal Diffusivity Measurements in Liquids", Int. J. Thermophys. 23, No. 3, 605 - 614 (May 2002). - PDF
  48. Simple, Accurate and Precise Measurements of Thermal Diffusivity in Liquids using a Thermal-Wave Cavity
    J. A. Balderas and A. Mandelis, "Simple, Accurate and Precise Measurements of Thermal Diffusivity in Liquids using a Thermal-Wave Cavity", Rev. Sci. Instrum. 72 (6), 2649-2652 (June 2001). - PDF
  49. Diffusion-Wave Laser Radiometric Diagnostic Quality Control Technologies for Materials NDE/NDT
    A. Mandelis, "Diffusion-Wave Laser Radiometric Diagnostic Quality Control Technologies for Materials NDE/NDT", NDT&E Int. 34, 277-287 (2001) - PDF
  50. Combined photothermal and photoacoustic characterization of silicon-epoxy composites and the existence of a particle thermal percolation threshold
    M. E. Rodriguez, P. J. Mendoza, A. Mandelis and L. Nicolaides, "Combined photothermal and photoacoustic characterization of silicon-epoxy composites and the existence of a particle thermal percolation threshold", Nuclear Instrum. Methods Phys. Res. B 184, 421-429 (2001). - PDF
  51. Lock-in Common Mode Rejection Demodulation: Measurement Technique and Applications to Thermal-Wave Detection. Theoretical
    A. Mandelis, S. Paoloni and L. Nicolaides, "Lock-in Common Mode Rejection Demodulation: Measurement Technique and Applications to Thermal-Wave Detection. Theoretical", Rev. Sci. Instrum. 71 (8), 2440-2444 (June 2000). - PDF
  52. Lock-in Common Mode Rejection Demodulation: Measurement Technique and Applications to Thermal-Wave Detection. Experimental
    S. Paoloni, L. Nicolaides and A. Mandelis, "Lock-in Common Mode Rejection Demodulation: Measurement Technique and Applications to Thermal-Wave Detection. Experimental", Rev. Sci. Instrum. 71 (8), 2445-2451 (June 2000). - PDF
  53. Instrumental Noise and Detectivity Analysis of Photopyroelectric Destructive Thermal-Wave Interferometry
    C.-H. Wang and A. Mandelis, "Instrumental Noise and Detectivity Analysis of Photopyroelectric Destructive Thermal-Wave Interferometry", Rev. Sci. Instrum. 71 (5), 1961-1970 (May 2000). - PDF
  54. A Novel PVDF Thin-Film Photopyroelectric Thermal-Wave Interferometry
    A. Mandelis and C. Wang, "A Novel PVDF Thin-Film Photopyroelectric Thermal-Wave Interferometry", Ferroelectrics 236, 235- 246 (2000). - PDF
  55. Laser Infrared Photothermal Radiometry of Semiconductors: Principles and Applications to Solid-State Electronics
    A. Mandelis, "Laser Infrared Photothermal Radiometry of Semiconductors: Principles and Applications to Solid-State Electronics", Solid-State Electron. 42, No. 1, 1-15, 1998. - PDF
  56. Thermal-Wave Resonant-Cavity Measurements of the Thermal Diffusivity of Air: A comparison between Cavity-Length and Modulation-Frequency Scans
    J. Shen, A. Mandelis and B.D. Aloysius, "Thermal-Wave Resonant-Cavity Measurements of the Thermal Diffusivity of Air: A comparison between Cavity-Length and Modulation-Frequency Scans", Int. J. Thermophys. 17, No. 6, 1241-1254, November 1996. - PDF
  57. Thermal-Wave Resonator Cavity
    J. Shen and A. Mandelis, "Thermal-Wave Resonator Cavity", Rev. Sci. Instrum. 66, 4999-5005, October 1995. - PDF
  58. Signal-to-Noise Ratios in Lock-in Amplifier Synchronous Detection: A Generalized Communications Systems Approach with Application to Frequency-, Time-, and Hybrid (Rate-Window) Photothermal Measurements
    A. Mandelis, "Signal-to-Noise Ratios in Lock-in Amplifier Synchronous Detection: A Generalized Communications Systems Approach with Application to Frequency-, Time-, and Hybrid (Rate-Window) Photothermal Measurements", Rev. Sci. Instrum. 65, 3309-3323, November 1994. - PDF
  59. Photothermal Rate Window Spectrometry for Non Contact Bulk Lifetime Measurements in Semiconductors
    Z.H. Chen, R. Bleiss, A. Mandelis and F. Shimura, "Photothermal Rate Window Spectrometry for Non Contact Bulk Lifetime Measurements in Semiconductors", J. Appl. Phys. 73, 5043-5048, May 1993. - PDF
  60. Photopyroelectric Spectroscopy of Condensed Phases: Technique and the State of the Art
    A. Mandelis, "Photopyroelectric Spectroscopy of Condensed Phases: Technique and the State of the Art", Condensed Matter News 2, 3-11, May/June 1993. -
  61. Lock in Rate Window Thermomodulation (Thermal Wave) and Photomodulation Spectrometry: Technique, Instrumentation and Measurement Methodologies
    A. Mandelis and Z. Chen, "Lock in Rate Window Thermomodulation (Thermal Wave) and Photomodulation Spectrometry: Technique, Instrumentation and Measurement Methodologies", Rev. Sci. Instrum. 63, 2977 - 2988, May 1992. - PDF
  62. Optimization and Characterization of a Differential Photopyroelectric Spectrometer
    C. Christofides, K. Ghandi and A. Mandelis, "Optimization and Characterization of a Differential Photopyroelectric Spectrometer", Meas. Sci. Technol. 1, 1363 - 1370 (1990). (Paper selected for inclusion in Engineering Optics, February, 1991 issue) - PDF
  63. Photopyroelectric Sensors for the Photothermal Analysis of Condensed Phases
    H. Coufal and A. Mandelis, "Photopyroelectric Sensors for the Photothermal Analysis of Condensed Phases", Ferroelectrics 118, 379-409, 1991. - PDF
  64. Optical Power Monitor Using a Thin-Film Pyroelectric Bimorph
    S.B. Peralta, K. Ghandi and A. Mandelis, "Optical Power Monitor Using a Thin-Film Pyroelectric Bimorph", Rev. Sci. Instrum. 61, 1038-1043, March 1990. - PDF
  65. Fourier Transform Infrared Photopyroelectric Spectroscopy of Solids; A New Technique
    A. Mandelis, F. Boroumand, H. Solka, J. Highfield and H. van den Bergh, "Fourier Transform Infrared Photopyroelectric Spectroscopy of Solids; A New Technique", Appl. Spectrosc. 44 (1), 132 - 143, January, 1990. - PDF
  66. Photopyroelectric (P2E) Thermal Wave Detection Via Contactless Capacitive PVDF Metal Probe Tip Coupling
    M. Mieszkowski, K.F. Leung and A. Mandelis, "Photopyroelectric (P2E) Thermal Wave Detection Via Contactless Capacitive PVDF Metal Probe Tip Coupling", Rev. Sci. Instrum. 60 (3), 306 316, March, 1989. - PDF
  67. Frequency Modulated Impulse Response Photothermal Detection Through Optical Reflectance I: Theory
    A. Mandelis and J.F. Power, "Frequency Modulated Impulse Response Photothermal Detection Through Optical Reflectance I: Theory", Appl. Opt. 27 (16), 3397 - 3407, August, 1988. - PDF
  68. Frequency Modulated Impulse Response Photothermal Detection Through Optical Reflectance II: Experimental
    J.F. Power and A. Mandelis, "Frequency Modulated Impulse Response Photothermal Detection Through Optical Reflectance II: Experimental", Appl. Opt. 27 (16), 3408 - 3417, August, 1988. - PDF
  69. Time Delay Domain and Pseudo Random Noise Photoacoustic and Photothermal Wave Spectroscopies. A Review of the State of the Art
    A. Mandelis, "Time Delay Domain and Pseudo Random Noise Photoacoustic and Photothermal Wave Spectroscopies. A Review of the State of the Art", IEEE Transactions on Sonics and Ultrasonics, Special Issue on Photoacoustics UFFC 33, 590 614, September, 1986. - PDF
  70. Frequency Modulated (FM) Time Delay Photoacoustic and Photothermal Wave Spectroscopies. Technique, Instrumentation and Detection. Part III: Mirage Effect Spectrometer, Dynamic Range and Comparison to Pseudo Random Binary Sequence (PRBS) Method
    A. Mandelis, L.M.L. Borm and J. Tiessinga, "Frequency Modulated (FM) Time Delay Photoacoustic and Photothermal Wave Spectroscopies. Technique, Instrumentation and Detection. Part III: Mirage Effect Spectrometer, Dynamic Range and Comparison to Pseudo Random Binary Sequence (PRBS) Method", Rev. Sci. Instr. 57 (4), 630 - 635, April, 1986. - PDF
  71. Frequency Modulated (FM) Time Delay Photoacoustic and Photothermal Wave Spectroscopies. Technique, Instrumentation and Detection. Part II: Mirage Effect Spectrometer Design and Performance
    A. Mandelis, L.M.L. Borm and J. Tiessinga, "Frequency Modulated (FM) Time Delay Photoacoustic and Photothermal Wave Spectroscopies. Technique, Instrumentation and Detection. Part II: Mirage Effect Spectrometer Design and Performance", Rev. Sci. Instr. 57 (4), 622 - 629, April, 1986. - PDF
  72. Frequency Modulated (FM) Time Delay Photoacoustic and Photothermal Wave Spectroscopies. Technique, Instrumentation and Detection. Part I: Theoretical
    A. Mandelis, "Frequency Modulated (FM) Time Delay Photoacoustic and Photothermal Wave Spectroscopies. Technique, Instrumentation and Detection. Part I: Theoretical", Rev. Sci. Instrum. 57 (4), 617 - 621, April, 1986. - PDF
  73. Frequency Domain Photopyroelectric Spectroscopy of Condensed Phases: A New, Simple and Powerful Spectroscopic Technique
    A. Mandelis, "Frequency Domain Photopyroelectric Spectroscopy of Condensed Phases: A New, Simple and Powerful Spectroscopic Technique", Chem. Phys. Lett. 108 (4), 388 - 392, July, 1984. - PDF
  74. Phase Measurements in the Frequency Domain Photoacoustic Spectroscopy of Solids
    A. Mandelis, Y.C. Teng and B.S.H. Royce, "Phase Measurements in the Frequency Domain Photoacoustic Spectroscopy of Solids", J. Appl. Phys. 50 (11), 7138 - 7148, November, 1979. - PDF
  75. Time Domain Photoacoustic Spectroscopy of Solids
    A. Mandelis and B.S.H. Royce, "Time Domain Photoacoustic Spectroscopy of Solids", J. Appl. Phys. 50 (6), 4330 - 4338, June, 1979. - PDF